
Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 90

MODULAR RESTFUL BACKEND ARCHITECTURE FOR

CENTRALIZED HALAL TOURISM ADMINISTRATION:

A SCRUM-BASED IMPLEMENTATION

Muhamad Singgih1*, Royana Afwani2, Ramaditia Dwiyansaputra3, Mochammad Dinta Alif Syaifuddin4

1,2,3,4 Department of Informatics Engineering, Faculty of Engineering, Mataram University, Mataram, Indonesia
Email: 1*singgipenaraga@gmail.com, 2royana@unram.ac.id, 3rama@unram.ac.id, 4d.nta.workspace@gmail.com

(*: corresponding author)

Abstract-The growth of halal tourism in Lombok, Indonesia, calls for scalable digital platforms with strong and centralized

administrative governance. This study proposes and implements a domain-oriented, modular RESTful API backend to support Super

Admin operations in the Lombok Halal Room (LHR) platform. Using a design-science approach and an iterative SCRUM process,

we developed a layered API Service Repository Infrastructure architecture using Hapi.js, PostgreSQL, and Redis, delivering 42

endpoints across key administrative domains with uniform JSON contracts and JWT-based authentication. The proposed contribution

is a metric-driven engineering template that links SCRUM execution to modular backend domains and validates the resulting system

using performance and software-quality measurements. Experimental results under controlled workloads show that Redis caching

substantially improves scalability for read-heavy administrative operations by reducing response time from seconds to low single-

digit milliseconds and increasing throughput to above 40,000 requests per second. Code-quality metrics further indicate clean module

boundaries (CBO=0; LCOM*=0), while the Maintainability Index (MI) highlights modules that require targeted refactoring. Overall,

the backend provides a reusable reference architecture for centralized halal tourism administration such as partner verification,

content moderation, transaction oversight, and system monitoring that can be adapted to similar platforms in other regions.

Keywords: Halal Tourism, Modular Architecture, Redis Caching, RESTful API, SCRUM,

1. INTRODUCTION

Halal tourism in Indonesia, particularly in West Nusa Tenggara (NTB), continues to grow rapidly, with Lombok

emerging as a leading destination [1]. To support efficient management of tourism service information, an integrated

digital solution is required. The Lombok Halal Room (LHR) platform was developed to serve hotel partners, travel

agencies, and end users through a unified RESTful API architecture [2]. The system is available as both web and mobile

applications, enabling flexible access for partners and travelers. In its initial phase, the platform provided a RESTful API

based web dashboard for partners to manage inventory, rates, and orders, which was subsequently extended to mobile

apps and public-facing channels [3]. Figure 1 illustrates the traveler interface of the previous web application, while

Figure 2 shows the mobile application interface.

The previously implemented RESTful API architecture offers modularity and reusability, allowing services to be

accessed by all system actors through both web and mobile applications. This approach provides a foundation for

platform sustainability and scalability. However, REST-API-based backend development faces common challenges

such as duplicated logic, integration friction, and limited modularity without sound architectural methodology [4].

Although the LHR platform currently serves multiple user groups, our evaluation reveals three critical architectural

constraints that hinder efficiency and scalability: First, the absence of centralized administrative control i.e., the lack of

a unified backend for the Super Admin to monitor cross-actor activities leads to data fragmentation, reduced operational

efficiency, and a higher risk of administrative errors [5].

Second, limited modularity in the initial standalone design causes repeated authentication and data validation

across domains. In contrast [6], a REST-API-based microservices architecture improves modularity and eases cross-

module integration [7]. Third, the lack of centralized administrative workflows partner verification, content approval,

and transaction oversight are not integrated complicates audit and evaluation processes. Research by Nguyen et al.

demonstrates that centralized administrative support for SME digital transformation enhances coordination and

oversight [8]. In summary, existing LHR services support multiple actors, but the absence of a dedicated and centralized

Super Admin backend creates a gap in governance, cross-domain consistency, and scalable administration.

Based on these identified gaps, the following research problem is formulated: How can a modular, reusable

backend architecture be designed to support centralized Super Admin operations across multiple stakeholders in a halal

tourism platform while ensuring performance, maintainability, and scalability? The main objectives of this study are to

applying scrum to sprint-based backend development, designing a modular backend architecture for centralized, cross-

actor administration, formulating a replicable restful api framework for similar systems, conducting post-implementation

evaluations of performance and software quality.

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 91

Figure 1. Traveler page of the previous Lombok Halal Room web application.

Figure 2. Previous Lombok Halal Room Mobile Application

This study focuses on the design and implementation of the Super Admin backend module within the LHR

ecosystem. The scope covers Super Admin-specific functionalities, including partner verification, content moderation,

transaction oversight, and system monitoring. Performance testing was conducted in a development environment under

controlled, simulated load scenarios to evaluate scalability and responsiveness. Limitations include testing conducted in

a development environment with simulated load rather than actual production traffic, security testing limited to

authentication and authorization mechanisms, and multi-tenant scalability not tested beyond the current user base.

In response to these challenges, this study adopts SCRUM as a continuation of the earlier system, thereby

maintaining process consistency and established artifacts including product backlog, sprint backlog, and definition of

done[3]. SCRUM has proven effective for managing dynamic requirements through iterative-incremental development,

cross-role collaboration, and quality control via sprints, demonstrating improved team productivity [9]. At the

architectural level, SCRUM practices align with continuous requirements engineering and iterative design [10]. We

operationalize this through a RESTful API based backend to achieve scalability and maintainability [11] complemented

by redis caching for performance optimization to reduce latency and I/O load in read-write-intensive scenarios [12].

Accordingly, SCRUM is used to control iterative delivery, while modular RESTful API design and caching are

evaluated to address maintainability and performance objectives. The implementation employs Hapi.js, PostgreSQL,

and Redis to deliver a maintainable, scalable backend that is ready for integration with diverse front-end platforms. This

research provides both theoretical and practical contributions. From a theoretical perspective, it demonstrates the

application of SCRUM methodology in developing modular backend systems for multi-stakeholder platforms,

contributing to the body of knowledge in agile software engineering for tourism systems. From a practical perspective,

the resulting architecture serves as a reference model for similar halal tourism platforms, offering a proven approach to

centralized administration while maintaining system modularity and performance.

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 92

2. RESEARCH METHOD

This study employs the SCRUM framework to develop the RESTful API backend for the Super Admin

module. The choice continues the practice from prior iterations and is supported by empirical evidence of

SCRUM’s effectiveness in managing complex software projects iteratively, collaboratively, and adaptively to

changing requirements. Prior studies on systems of similar scope The Development of Backend Admin Dashboard

for Business Project Monitoring using Scrum Method: A Case Study at PT Gerbang Sinergi Utama[13], and Scrum

Implementation in Development of Online Research Application [14], report improved requirements management

and software quality in backend and web-based application development. Further, the empirical theory in A Theory

of Scrum Team Effectiveness [15], asserts that SCRUM teams with high autonomy, adaptability, and robust

managerial support tend to achieve superior outcomes in software projects.

2.1. SCRUM Implementation

In this research, SCRUM is tailored to the context of academic and research-oriented system development. The

team structure comprises a Product Owner, a Scrum Master, a Development Team, and a Reviewer. The Product Owner

prioritizes features and requirements; the Scrum Master ensures adherence to SCRUM practices; the Development Team

executes the technical implementation; and the Reviewer conducts academic evaluation and validates sprint outcomes.

This structure aligns with findings from Applying the Scrum Method in Software Development for Undergraduate

Thesis Project Implementation [16], which indicates that academic roles can be flexibly integrated into SCRUM without

diminishing collaborative effectiveness.

Event adaptations are introduced to better fit the research context. Sprint Planning is used to set a prioritized

backlog on a biweekly cadence; Daily Scrum are held three times per week for team synchronization; and Sprint Reviews

involve the academic Reviewer to assess alignment between sprint outcomes and research goals. Sprint Retrospectives

evaluate not only technical factors but also communication effectiveness and documentation coherence. Such

adaptations are consistent with ScrumAdemia: An Agile Guide for Doctoral Research [17], which describes applying

SCRUM in academia by coupling technical evaluation with scholarly reflection.

Figure 3. Research Flow Diagram

2.2. Research Workflow Diagram

The research workflow follows an iterative SCRUM cycle from requirements elicitation through final

documentation, as depicted in Figure 3. The diagram highlights how SCRUM stages are systematically connected to

produce a modular, scalable, and integration-ready backend. Figure 4 presents the adapted SCRUM Flowchart used in

this study, showing how each phase contributes to the research objectives and iteratively produces a production-ready

Super Admin backend:

a. Product Backlog (MoSCoW Prioritization): The Product Owner and development team elicit requirements

and prioritize backlog items using the MoSCoW method, then group them into functional domains to support

modularization. This phase supports Research Objectives (a) and (b) by operationalizing SCRUM practices

and structuring modules from the outset.

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 93

b. Sprint Planning: High-priority backlog items are selected for a two-week sprint and decomposed into

implementable tasks while defining the sprint goal and acceptance criteria This supports Research Objective

(c) by ensuring each sprint increment aligns with the proposed replicable RESTful API framework.

c. Sprint Execution (2-week sprint): The team implements RESTful API endpoints and supporting services

according to the planned tasks, producing a working increment at the end of the sprint.

d. Daily Scrum (3 times per week): During sprint execution, short synchronization meetings are conducted three

times per week to track progress, resolve impediments, and maintain alignment across team members.

e. Sprint Review: The completed increment is demonstrated and validated with the Product Owner/reviewer

against acceptance criteria, and the Product Backlog is updated based on feedback.

f. Sprint Retrospective: The team evaluates the process and identifies concrete improvement actions to enhance

the effectiveness of subsequent sprints.

g. Sprint Increment and Evaluation: Each sprint delivers completed features that accumulate into a production-

ready backend. Post-implementation evaluation is then performed using performance and code-quality

metrics (latency, throughput, MI, CBO, and LCOM*), addressing Research Objective (d).

2.3. Research Phases

This study was carried out through a structured set of phases that translate research objectives into an

implementable and evaluable Super Admin backend. The phases follow an iterative SCRUM workflow, starting from

requirement elicitation and backlog formation, continuing with sprint-based implementation, and concluding with

metric-driven evaluation and final documentation. This phased approach ensures traceability from requirements to

delivered features, while enabling continuous refinement through empirical feedback across development iterations.

2.3.1. Requirements Gathering

This phase is conducted collaboratively by the Product Owner and Development Team to identify Super Admin

requirements. The analysis covers the existing platform and includes interviews with previous developers to understand

architectural structure and inter-module dependencies. The approach follows iterative development requirement-

analysis practices described by Basri et al. [17].

Figure 4. SCRUM Flowchart

2.3.2. Product Backlog Development

The Product Backlog is formed through collaborative workshops and prioritized using the MoSCoW method Must

have, should have, could have, Won’t have [18]:

a. High Priority (Must Have):

1. Authentication for Super Admin access

2. User management with full CRUD operations

3. Partner management for hotels and travel agencies

4. Balance management for financial monitoring

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 94

b. Medium Priority (Should Have):

1. Configuration management for hospitality settings

2. Order management for booking oversight

3. Ads management for promotional content

c. Low Priority (Could Have):

1. Destination management for tourism content

2. Client-type management for system categorization

2.3.3. Sprint Execution

Sprints run on a two-week cycle. To maintain synchronization, the team holds Daily Scrum Meetings f three times

per week for knowledge transfer and technical alignment, and a Weekly Academic Check-in with the Product Owner to

ensure academic objectives are met. The execution includes: a living Product Backlog; Sprint Planning (defining the

Sprint Goal, selecting PBIs, and task decomposition); the Sprint (incremental implementation to produce a reviewable

increment); the Daily Scrum (brief synchronization on progress and impediments); Sprint Review (increment demo,

validation against acceptance criteria, backlog updates); and Sprint Retrospective (process improvements for the next

sprint) [19]

2.3.4. Metric and Evalution

SCRUM effectiveness is evaluated using standard metrics [9]:

a. Velocity: Story points completed per sprint to gauge team productivity.

b. Sprint Completion Rate: Percentage of planned work finished each sprint.

c. Burn-down Chart: Visual representation remaining sprint work

d. Performance Testing: Assessment of system scalability and responsiveness.

e. Code Quality Metrics: Cyclomatic complexity, maintainability index, and technical debt [20], [21].

All performance experiments were executed locally on a MacBook Pro (MacBookPro17,1) equipped with an

Apple M1 chip (8 cores: 4 performance and 4 efficiency) and 8 GB of RAM, running in a development environment.

This configuration represents a constrained, non-production setup; therefore, the reported throughput (above 40,000

requests/s) and latency improvements should be interpreted as results obtained under controlled, local conditions.

Nevertheless, documenting the hardware baseline supports reproducibility and allows future studies to compare

performance under different server-grade or multi-tenant deployment environments.

2.3.5. Final Documentation

Final documentation focuses on two artifacts: (i) a Postman Collection specifying API endpoints and (ii) front-end

integration of the APIs. The collection documents API versioning, JWT authentication (Authorization: Bearer <token>),

uniform JSON response contracts, consistent HTTP status codes, and a unified error model; accompanying assets

include the Postman collection and a testing environment to support replication. Evidence of front-end integration is

documented through a representative module (e.g., User Management), mapping UI states to HTTP codes and

standardized error handling. This executable, collection-based documentation approach aligns with IEEE literature

indicating that standardized API contracts facilitate black-box evolution and testing of REST services practically

automated via Postman Collections and the Newman CLI in local setups and CI pipelines [22].

Figure 5. Super Admin Backend System Architecture

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 95

3. RESULTS AND DISCUSSION

This section presents the implementation outcomes and discusses the findings across development execution,

architectural results, and empirical evaluations. The results are organized to reflect both process metrics and technical

validation of the proposed backend.

3.1. Sprint Execution

This subsection summarizes how the system was delivered iteratively through SCRUM sprints, highlighting key

development milestones and the evolution of core components across iterations.

3.1.1. Architecture Development Evolution

Backend architecture was developed incrementally, whereby each sprint delivered a functional module that could

be integrated with prior modules. This approach enabled continuous validation of architectural design and adaptation to

evolving requirements throughout development.

Figure 5 depicts the overall system comprising three primary layers: a Web Front-End used by the Super

Admin, a Backend API layer built with the Hapi.js framework, and a Data layer consisting of PostgreSQL as the

primary database and Redis as a caching layer. Inter-layer communication uses RESTful API with JSON payloads

and JWT based authentication.

a. Sprints 1–3 (Core Foundation Development): Established the architectural foundation, including authentication,

user management, and partner management. Activities covered database schema design, API routing structure, and

security implementation via JWT.

b. Sprints 4–6 (Business Logic Extension): Extended functionality into business-specific domains such as balance,

configuration, and order management, emphasizing business rules and data validation.

c. Sprints 7–9 (Content Management): Focused on content management capabilities, including advertisements,

destinations, and client-type management for administrative flexibility.

3.1.2. Technical Architecture Results

The resulting backend adopts a layered architecture with clear separation of concerns:

a. Presentation Layer: RESTful API endpoints with consistent HTTP methods and response formats.

b. Logic Layer: Service classes enforcing business rules and validation.

c. Data Access Layer: Repository pattern for database operations.

d. Infrastructure Layer: Cross-cutting concerns including logging, caching, and authentication.

Table 1 shows the layered pattern yields three key benefits:

a. Clear separation of concerns enabling independent development and maintenance

b. Appropriate abstractions that facilitate effective unit and integration testing

c. Flexibility to adapt technology changes without impacting the entire system.

3.1.3. Database Design and Implementation

The schema follows a normalized relational model with focused indexing for performance. Extensions build on

the existing schema in a backward-compatible manner, consistent with safe database evolution principles.

Figure 6 shows the complete schema including existing tables (users, roles, partners, balances) and newly added

tables (advertisements, destinations, destination_pictures, client_types). Foreign-key constraints preserve referential

integrity. Core tables such as users and roles serve as central entities related to most domain modules.

a. New Tables Added: advertisements (promotional content), destinations (tourism catalog), destination_pictures

(destination media assets), client_types (client categorization).

b. Key Design Decisions: foreign-key constraints for data integrity; indexed columns for frequently queried fields;

JSONB columns for flexible metadata; and audit trails for data-change tracking. The design follows normalization

principles to reduce redundancy while maintaining performance via judicious indexing. PostgreSQL JSONB offers

flexibility for heterogeneous metadata without compromising the relational backbone.

Table 1. Architecture Components Summary

Layer Components Technology Responsibilities
API Layer Route Handlers Hapi.js HTTP request/response handling
Service Layer Business Services Node.js Business logic execution
Data Layer Repositories PostgreSQL Data persistence operations
Cache Layer Cache Services Redis Peformance optimization
Security Layer Auth Middleware JWT Authentication & authorization

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 96

3.2. Metric and Evaluation

This subsection reports quantitative metrics used to assess the development process, code quality, and system

performance. The evaluation provides evidence of delivery consistency, maintainability characteristics, and the impact

of caching on runtime behavior.

3.2.1. Scrum Executin Result

Table 2 summarizes sprint delivery performance across nine sprints. In total, 115 out of 132 planned story

points were completed (87.1%), yielding a mean velocity of 12.8 story points per sprint.

Figure 6. Entity Relationship Diagram Backend System

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 97

Table 2. Sprint Performance Metrics

Sprint Domain Planned Points Completed Points Completion Rate Velo-city

1 Authentication 13 13 100% 13

2 User Management 15 14 93% 14

3 Mitra Management 16 15 94% 15

4 Balance Management 12 5 42% 5

5 Config Management 18 17 94% 17

6 Order Management 14 9 64% 9

7 Advertisement Management 15 15 100% 15

8 Destination Management 16 14 88% 14

9 Type Management 13 13 100% 13

Total All Domains 132 115 87.1% 12.8

 High completion in Sprints 1, 7, and 9 (100%) indicates effective planning under stable scope, whereas the drops

in Sprint 4 (42%) and Sprint 6 (64%) reflect increased integration complexity in critical business modules (e.g., balance

and orders).

Sprint performance analysis indicates an average completion rate of 92% with a stable velocity of 14 story points

per sprint. These results support the effectiveness of SCRUM for an individual-development context, aligning with

Shafiee et al. (2023) [23]. Sprints achieving 100% completion (Sprints 1, 7, and 9) suggest sound planning and stable

capacity.

 Significant variation in Sprints 4 (42%) and 6 (64%) reflects inherent complexity in backend integration across

critical business components. This observation aligns with Lee and Chen (2023) [24] regarding agile challenges in highly

interdependent domains. The recovery in subsequent sprints supports SCRUM’s inspection and adaptation mechanism

through sprint reviews and retrospectives, improving estimation accuracy and removing impediments over time

Figure 7 visualizes planned versus completed story points per sprint (bars) alongside completion rate and

velocity trends (lines). Overall delivery reached 87.1% of planned work (115/132), with a mean velocity of 12.8

story points per sprint.

The lowest completion occurred in Sprint 4 (42%), which is consistent with higher technical complexity and

integration effort, while subsequent sprints show recovery to 88–100% after replanning and process adjustments during

retrospectives. This pattern indicates controlled variability: although domain complexity affects short-term completion,

the team consistently restores delivery performance through SCRUM feedback cycles.

3.2.2. Code Quality Metrics

Modularity and maintainability of the Hapi.js backend were assessed using three standard metrics: Coupling

Between Objects (CBO), Lack of Cohesion of Methods (LCOM*), and Maintainability Index (MI). CBO and LCOM*

members of the CK metric family remain widely used in empirical studies (including IEEE venues) as indicators of

coupling and cohesion at the module/class level [20]. MI follows Plato/escomplex (a composite of cyclomatic

complexity, lines of code, and Halstead volume), consistent with tertiary syntheses linking coupling/cohesion to

maintainability and contemporary discussions of MI [25]

Figure 7. Sprint Velocity and Burn-down Analysis

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 98

Table 3. lists per-domain metrics (lower is better for CBO/LCOM*; higher is better for MI).

Module CBO LCOM* MI Files

api/advertisements 0 0 64.87 3

api/amenities 0 0 63.30 3

api/authentications 0 0 65.78 3

api/banks 0 0 66.06 3

api/cards 0 0 65.26 3

api/clients 0 0 47.93 2

api/clientsFacilities 0 0 65.70 3

api/clientTypes 0 0 64.57 3

api/contacts 0 0 70.14 3

api/destinations 0 0 63.71 3

api/details 0 0 59.00 3

api/docs 0 0 77.64 2

api/facilities 0 0 67.86 3

api/options 0 0 63.30 3

api/orders 0 0 47.60 2

api/policies 0 0 63.46 3

api/products 0 0 43.20 2

api/roles 0 0 70.20 3

api/users 0 0 56.68 3

api/verifications 0 0 70.25 3

api/withdrawals 0 0 61.30 3

core/ 0 0 68.47 84

Files are grouped by first-level API domains (e.g., api/users, api/orders). CBO counts other API domains imported

by a given domain; dependencies on core/ components and external packages are excluded to isolate inter-API coupling.

Cohesion is approximated by an import-based proxy (LCOM*), defined in (1) with I_intra the number of intra-domain

imports and I_total the domain’s total imports. MI is taken from Plato/escomplex reports[26].

𝐿𝐶𝑂𝑀*() = 1 − (𝐼_𝑖𝑛𝑡𝑟𝑎 ⁄ 𝐼_𝑡𝑜𝑡𝑎𝑙) (1)

Results. Of 21 API domains, 9/21 achieved MI ≥ 65 (fair–good) and 4/21 exceeded MI ≥ 70 api/docs (77.64),

api/verifications (70.25), api/roles (70.20), api/contacts (70.14). Three domains fell below 50 and require targeted

refactoring: api/products (43.20), api/orders (47.60), api/clients (47.93). In this operationalization, all API domains report

CBO = 0 and LCOM* = 0, indicating clean module boundaries and centralized reuse within core/. The core/ component

achieved MI = 68.47 across 84 files[21].

Table 3 shows that most domains achieved fair-to-good maintainability (MI ≥ 65), while api/products,

api/orders, and api/clients remain refactoring targets due to denser business logic and higher complexity

concentration.

Consistently low inter-API coupling (CBO = 0) supports stable separation of concerns and reduces change-

propagation risk. MI variability highlights business-logic–dense hotspots; literature-aligned refactors reducing branching

(early returns), extracting validation/error mapping into core/, and isolating data access in repositories are expected to

lift MI for low-scoring modules without increasing coupling. Recent studies continue to employ CBO (and variants) as

maintainability proxies [27].

3.2.3. Redis Performance Testing

Performance was evaluated under three load scenarios to assess scalability and responsiveness. The results

compare two configurations without caching and with Redis caching to validate whether the proposed architecture meets

operational demands under realistic workloads.

Table 4. Performance Test Results

Metric Test-1 (W/O → With) Test-2 (W/O → With) Test-3 (W/O → With)

Avg. resp. (ms) 8986 → 2 14946 → 2 11864 → 3

95th perc. (ms) 13056 → 3 26671 → 3 21104 → 7

RPS (avg) 769.24 → 41184.40 830.02 → 41108.67 592.64 → 27447.14

Memory (MB) 90 → 85 85 → 91 111 → 82

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 99

Across the three scenarios, enabling Redis reduced the average response time from 8,986-14,946 ms to 2-3 ms and

tightened p95 latency from 13,056-26,671 ms to 3-7 ms. Throughput increased from 592.64-830.02 req/s to 27,447.14-

41,184.40 req/s (≈46-54×). Memory changes were moderate and scenario-dependent (90→85 MB; 85→91 MB;

111→82 MB).

Figure 8 provides a visual summary of Table 4 and highlights a consistent performance gap between both

configurations. The Redis configuration shows substantially lower bars for response time and p95 latency while

simultaneously achieving higher throughput across all tests, indicating that caching shifts hot read paths from database

I/O to in-memory access. This behavior aligns with common caching trade-offs, where a small and scenario-dependent

memory overhead can be acceptable in exchange for significant improvements in responsiveness and request handling

capacity [28].

Production security and multi-tenant considerations. While Table 4 and Figure 8 show substantial scalability gains

with Redis, the evaluation was conducted in a controlled development environment and security validation was limited

to JWT-based authentication and authorization. Therefore, these results should be interpreted as feasibility evidence

rather than full production readiness. Future work should validate production controls (e.g., rate limiting, audit logging,

and key management) and evaluate multi-tenant isolation, including tenant-scoped access and cache-key partitioning to

avoid cross-tenant interference.

Policy implications for halal tourism governance. A centralized Super Admin backend enables consistent

governance across the platform by supporting partner verification, content moderation, transaction oversight, and system

monitoring in one administrative layer. This consolidation strengthens accountability through standardized workflows

and auditability, and it can improve trust and operational transparency for stakeholders within halal tourism ecosystems.

3.3. Final Documentation

This subsection describes the produced documentation artifacts that support API reuse and integration. It outlines

how executable API specifications and front-end integration evidence were prepared to ensure replicability and practical

adoption.

3.3.1. API Endpoint Distribution

Performance and maintainability are also influenced by how APIs are organized across domains. Therefore, this

section reports the distribution of Super Admin endpoints to illustrate functional coverage and architectural consistency.

Table 5. API Endpoints Distribution

Domain Endpoints Methods Key Features

Authentication 2 POST, DELETE Login, logout with JWT

User Management 4 GET, POST, PUT, DELETE CRUD operations for users

Mitra Management 4 GET, POST, PUT, DELETE Mitra administration

Balance Management 1 GET Financial monitoring

Config Management 16 GET, POST, PUT, DELETE System configuration

Order Management 3 GET, PUT, DELETE Order oversight

Advertisement Management 4 GET, POST, PUT, DELETE Promotional content

Destination Management 4 GET, POST, PUT, DELETE Tourism destinations

Type Management 4 GET, POST, PUT, DELETE Client categorization

Total 42 Multiple Complete CRUD

Table 5 summarizes 42 RESTful API endpoints across nine functional domains (auth, users, partners,

finance/balance, config, orders, ads, destinations, client types). The distribution indicates comprehensive operational

Figure 8. Performance Metrics Comparison: Without Cache vs With Redis Cache

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 100

coverage: eight domains implement full CRUD (GET/POST/PUT/DELETE) for end-to-end administration, while

Balance Management is exposed as read-only (GET) to mitigate risk of direct financial data mutation. Design

consistency resource-oriented naming, uniform JSON response contracts, standardized HTTP status codes, and a unified

error model accelerates client integration and reduces integration defects. JWT in the Authorization: Bearer <token>

header preserves statelessness and facilitates horizontal scaling. Architecturally, domain segmentation aligns with

separation of concerns: changes in one domain (e.g., ads or destinations) do not cascade to others (e.g., users or partners),

thereby improving modularity, maintainability, and cross-channel reusability (web and mobile).

3.3.2. Frontend API implementation

Front-end integration was validated through representative modules. Figure 9 (User Management) shows

consumption of the user-list endpoint (GET /users) with pagination and sorting, and administrative actions mapping

detail/create/update/delete to routes (GET /users/{id}; POST/PUT/DELETE /users/{id}) per contract. Figure 10

(Clients) demonstrates a similar pattern for the client domain, including UI-state mapping to HTTP codes (200/201/204

for success; 400/401/403/404/409/422 for anticipated errors). Error behavior is handled uniformly from a standard

payload (fields code, message, details), so UI components require no domain-specific adapters. These integration

artifacts confirm that (i) endpoint specifications are consistently consumable by the front end, (ii) JWT authentication

functions end to end, and (iii) uniform response contracts reduce boilerplate in the presentation layer. Overall, the results

validate API readiness for centralized administrative orchestration via the Super Admin interface and underscore the

benefits of domain-based modular design for integration speed and evolutionary stability.

4. CONCLUSION

This study designed and implemented a domain-oriented, modular RESTful API backend to enable centralized

Super Admin operations in the Lombok Halal Room (LHR) platform. The proposed solution follows a layered

Figure 9. User Management Interface Demonstrating Frontend Integration with Backend API

Figure 10. Balance Interface Demonstrating Frontend Integration with Backend API

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 101

architecture with consistent JSON response contracts and JWT-based authentication, and it delivers 42 endpoints across

the core administrative domains. Front-end integration was validated, indicating that the backend is reusable and

deployable for both web and mobile administrative workflows.

The scientific novelty of this work lies in combining an iterative SCRUM-based development process with a

modular RESTful API backend architecture in the specific context of halal tourism administration, supported by

systematic post-implementation evaluation using performance and software-quality metrics. This integrated approach

provides a replicable engineering method for developing scalable administrative backends beyond a single application

setting.

Experimental results show that Redis caching substantially improves responsiveness and scalability under load.

Across the evaluated scenarios, average response time decreased to 2–3 ms and p95 latency tightened to 3–7 ms, while

throughput increased to 27,447–41,184 requests/s. In terms of software quality, CBO=0 and LCOM*=0 indicate clean

module boundaries, and the Maintainability Index (MI) offers actionable guidance for identifying modules that should

be prioritized for refactoring.

This study has limitations. The experiments were conducted in a controlled environment using simulated

workloads and therefore do not fully represent multi-tenant production variability or end-to-end security constraints. As

a result, the reported findings should be interpreted as evidence of feasibility and engineering effectiveness within the

evaluated setup.

Future work should build directly on these results by (1) refactoring modules with lower MI to reduce complexity

concentration, (2) extending evaluation to multi-tenant and production-like workloads, and (3) improving operational

readiness through observability, rate limiting, and security hardening. These directions are expected to increase

robustness while preserving the latency and throughput gains demonstrated by Redis caching.

From a practical perspective, the proposed backend can strengthen governance in halal tourism digital ecosystems

by enabling centralized verification, content moderation, transaction oversight, and system monitoring. As a reusable

architectural template, it can serve as a reference implementation for similar halal tourism platforms in other regions.

BIBLIOGRAPHY

[1] A. Prawiro, “Halal Tourism in Lombok: Harmonization of Religious Values and Socio-Cultural Identity,” Share: Jurnal

Ekonomi dan Keuangan Islam, vol. 11, no. 2, pp. 322–345, Dec. 2022, doi: 10.22373/share.v11i2.14905.
[2] Mahendra Putra Raharja, Ramaditia Dwiyansaputra, Royana Afwani, Gibran Satya Nugraha, Fahru Alfarizi Hananza Putrawan,

and Mursyidhan Ariefbillah Ahmad Masri, “Backend Development of a Halal Tourism Application Based on Service for Cross-

Platform Application for Travelers,” 3rd MIMSE 2024, 2024.
[3] Diaz Khalid Ananda, Ramaditia Dwiyansaputra, Royana Afwani, Gibran Satya Nugraha, Mochammad Dinta Alif Syaifuddin,

and M. Asrorul Khopid, “Integrated Halal Tourism Applications Based on REST API for Hotel Partners and Travel Agents,”

3rd MIMSE 2024, 2024.

[4] S. B. Hasan, Y. Nader Abdullah, and M. Khalil Darwesh, “Design and Implementation The digital transformation of the student

clearance system for Soran University,” Academic Journal of Nawroz University, vol. 12, no. 3, pp. 252–261, Aug. 2023, doi:

10.25007/ajnu.v12n3a1633.

[5] S. Sharma, O. P. Rishi, and A. Sharma, “IoTeST: IoT-Enabled Smart Tourism—Shaping the Future of Tourism,” 2021, pp.

569–576. doi: 10.1007/978-981-15-6014-9_67.

[6] I. Shabani, E. Mëziu, B. Berisha, and T. Biba, “Design of Modern Distributed Systems based on Microservices Architecture,”

International Journal of Advanced Computer Science and Applications, vol. 12, no. 2, 2021, doi:

10.14569/IJACSA.2021.0120220.

[7] C. Li and B. Niu, “IOT Gateway Based on Microservices,” 2021, pp. 26–33. doi: 10.1007/978-3-030-79197-1_4.

[8] T. T. Nguyen, M. T. Nguyen, and N. T. Le, “An Administrative Support System for Digital Transformation of Small and

Medium-Sized Enterprises in Vietnam,” Foundations of Management, vol. 16, no. 1, pp. 177–194, Jan. 2024, doi:

10.2478/fman-2024-0011.

[9] D. S. Pashchenko, “Refining the Scrum Paradigm: A Comprehensive Research of Software Development Practices (2020–

2023),” Computing&AI Connect, vol. 1, no. 1, p. 1, Dec. 2024, doi: 10.69709/CAIC.2024.103102.

[10] D. D. Wazaumi, V. A. Saputro, S. K. Nisa, and S. A. Zahrani, “Implementasi Framework Scrum Dalam Pengembangan

Dashboard Monitoring Untuk Optimasi Pengelolaan Data Interface,” IDEALIS : InDonEsiA journaL Information System, vol.

8, no. 1, pp. 64–73, Jan. 2025, doi: 10.36080/idealis.v8i2.3338.

[11] L. Chamari, E. Petrova, and P. Pauwels, “An End-to-End Implementation of a Service-Oriented Architecture for Data-Driven

Smart Buildings,” IEEE Access, vol. 11, pp. 117261–117281, 2023, doi: 10.1109/ACCESS.2023.3325767.

[12] I. R. D. Muhammad and I. V. Paputungan, “Development of Backend Server Based on REST API Architecture in E-Wallet

Transfer System,” Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi, vol. 3, no. 2, pp. 79–87, Jan. 2024, doi:

10.20885/snati.v3.i2.35.

[13] D. Arya, H. Putra, E. Darwiyanto, and R. Nurtantyana, “Development of Backend Admin Dashboard for Business Project

Monitoring using Scrum Method,” Aug. 2024, doi: 10.34818/indojc.2024.9.2.969.

[14] T. Sundara, D. Setiawan, F. Subkhan, and F. R. Kautsar, “Scrum Implementation in Development of Online Research

Application,” The Indonesian Journal of Computer Science, vol. 11, no. 2, Aug. 2022, doi: 10.33022/ijcs.v11i2.3072.

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 102

[15] C. Verwijs and D. Russo, “A Theory of Scrum Team Effectiveness,” ACM Transactions on Software Engineering and

Methodology, vol. 32, no. 3, pp. 1–51, Jul. 2023, doi: 10.1145/3571849.

[16] A. R. P. Ramadhan, I. Waspada, N. Bahtiar, and A. S. Pramayoga, “Applying the Scrum Method in Software Development for

Undergraduate Thesis Project Implementation,” Jurnal Masyarakat Informatika, vol. 16, no. 1, pp. 119–133, May 2025, doi:

10.14710/jmasif.16.1.73187.

[17] C. Franco et al., “Introducing ScrumAdemia: An Agile Guide for Doctoral Research,” PS Polit Sci Polit, vol. 56, no. 2, pp. 251–

258, Apr. 2023, doi: 10.1017/S1049096522001408.

[18] Suchetha Vijayakumar, Krishna Prasad K, and R. Holla M., “Assessing the Effectiveness of MoSCoW Prioritization in Software

Development: A Holistic Analysis across Methodologies,” EAI Endorsed Transactions on Internet of Things, vol. 10, Oct. 2024,

doi: 10.4108/eetiot.6515.

[19] I. Heriyawan, U. Hayati, and O. Nurdiawan, “Rancang Bangun Sistem Informasi Akuntansi Menggunakan Codeigniter Dengan

Metode Scrum Studi Kasus : Pt Surya Marga Sarana,” 2023.

[20] F. N. Colakoglu, A. Yazici, and A. Mishra, “Software Product Quality Metrics: A Systematic Mapping Study,” IEEE Access,

vol. 9, pp. 44647–44670, 2021, doi: 10.1109/ACCESS.2021.3054730.

[21] M. Klima et al., “Selected Code-Quality Characteristics and Metrics for Internet of Things Systems,” IEEE Access, vol. 10, pp.

46144–46161, 2022, doi: 10.1109/ACCESS.2022.3170475.

[22] N. Laranjeiro, J. Agnelo, and J. Bernardino, “A Black Box Tool for Robustness Testing of REST Services,” IEEE Access, vol.

9, pp. 24738–24754, 2021, doi: 10.1109/ACCESS.2021.3056505.

[23] S. Shafiee, Y. Wautelet, S. Poelmans, and S. Heng, “An empirical evaluation of scrum training’s suitability for the model-driven

development of knowledge-intensive software systems,” Data Knowl Eng, vol. 146, p. 102195, Jul. 2023, doi:

10.1016/j.datak.2023.102195.

[24] W.-T. Lee and C.-H. Chen, “Agile Software Development and Reuse Approach with Scrum and Software Product Line

Engineering,” Electronics (Basel), vol. 12, no. 15, p. 3291, Jul. 2023, doi: 10.3390/electronics12153291.

[25] A. Abbad-Andaloussi, “On the relationship between source-code metrics and cognitive load: A systematic tertiary review,”

Journal of Systems and Software, vol. 198, p. 111619, Apr. 2023, doi: 10.1016/j.jss.2023.111619.

[26] U. Iftikhar, N. Bin Ali, J. Börstler, and M. Usman, “A tertiary study on links between source code metrics and external quality

attributes,” Inf Softw Technol, vol. 165, p. 107348, Jan. 2024, doi: 10.1016/j.infsof.2023.107348.

[27] P. Sun, D.-K. Kim, H. Ming, and L. Lu, “Measuring Impact of Dependency Injection on Software Maintainability,” Computers,

vol. 11, no. 9, p. 141, Sep. 2022, doi: 10.3390/computers11090141.

[28] M. T. Faridi, K. Singh, K. Soni, and S. Negi, “Memcached vs Redis Caching Optimization Comparison using Machine

Learning,” in 2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS), IEEE, Dec.

2023, pp. 1153–1159. doi: 10.1109/ICACRS58579.2023.10404339.

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

