Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

MODULAR RESTFUL BACKEND ARCHITECTURE FOR
CENTRALIZED HALAL TOURISM ADMINISTRATION:
A SCRUM-BASED IMPLEMENTATION

Muhamad Singgih!", Royana Afwani?, Ramaditia Dwiyansaputra’, Mochammad Dinta Alif Syaifuddin®

1.23.4 Department of Informatics Engineering, Faculty of Engineering, Mataram University, Mataram, Indonesia
Email: "singgipenaraga@gmail.com, “royana@unram.ac.id, *rama@unram.ac.id, “d.nta.workspace@gmail.com
(*: corresponding author)

Abstract-The growth of halal tourism in Lombok, Indonesia, calls for scalable digital platforms with strong and centralized
administrative governance. This study proposes and implements a domain-oriented, modular RESTful API backend to support Super
Admin operations in the Lombok Halal Room (LHR) platform. Using a design-science approach and an iterative SCRUM process,
we developed a layered API Service Repository Infrastructure architecture using Hapijs, PostgreSQL, and Redis, delivering 42
endpoints across key administrative domains with uniform JSON contracts and JWT-based authentication. The proposed contribution
is a metric-driven engineering template that links SCRUM execution to modular backend domains and validates the resulting system
using performance and software-quality measurements. Experimental results under controlled workloads show that Redis caching
substantially improves scalability for read-heavy administrative operations by reducing response time from seconds to low single-
digit milliseconds and increasing throughput to above 40,000 requests per second. Code-quality metrics further indicate clean module
boundaries (CBO=0; LCOM*=0), while the Maintainability Index (MI) highlights modules that require targeted refactoring. Overall,
the backend provides a reusable reference architecture for centralized halal tourism administration such as partner verification,
content moderation, transaction oversight, and system monitoring that can be adapted to similar platforms in other regions.

Keywords: Halal Tourism, Modular Architecture, Redis Caching, RESTful API, SCRUM,
1. INTRODUCTION

Halal tourism in Indonesia, particularly in West Nusa Tenggara (NTB), continues to grow rapidly, with Lombok
emerging as a leading destination [1]. To support efficient management of tourism service information, an integrated
digital solution is required. The Lombok Halal Room (LHR) platform was developed to serve hotel partners, travel
agencies, and end users through a unified RESTful API architecture [2]. The system is available as both web and mobile
applications, enabling flexible access for partners and travelers. In its initial phase, the platform provided a RESTful API
based web dashboard for partners to manage inventory, rates, and orders, which was subsequently extended to mobile
apps and public-facing channels [3]. Figure 1 illustrates the traveler interface of the previous web application, while
Figure 2 shows the mobile application interface.

The previously implemented RESTful API architecture offers modularity and reusability, allowing services to be
accessed by all system actors through both web and mobile applications. This approach provides a foundation for
platform sustainability and scalability. However, REST-API-based backend development faces common challenges
such as duplicated logic, integration friction, and limited modularity without sound architectural methodology [4].
Although the LHR platform currently serves multiple user groups, our evaluation reveals three critical architectural
constraints that hinder efficiency and scalability: First, the absence of centralized administrative control i.e., the lack of
aunified backend for the Super Admin to monitor cross-actor activities leads to data fragmentation, reduced operational
efficiency, and a higher risk of administrative errors [5].

Second, limited modularity in the initial standalone design causes repeated authentication and data validation
across domains. In contrast [6], a REST-API-based microservices architecture improves modularity and eases cross-
module integration [7]. Third, the lack of centralized administrative workflows partner verification, content approval,
and transaction oversight are not integrated complicates audit and evaluation processes. Research by Nguyen et al.
demonstrates that centralized administrative support for SME digital transformation enhances coordination and
oversight [8]. In summary, existing LHR services support multiple actors, but the absence of a dedicated and centralized
Super Admin backend creates a gap in governance, cross-domain consistency, and scalable administration.

Based on these identified gaps, the following research problem is formulated: How can a modular, reusable
backend architecture be designed to support centralized Super Admin operations across multiple stakeholders in a halal
tourism platform while ensuring performance, maintainability, and scalability? The main objectives of this study are to
applying scrum to sprint-based backend development, designing a modular backend architecture for centralized, cross-
actor administration, formulating a replicable restful api framework for similar systems, conducting post-implementation
evaluations of performance and software quality.

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 90

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026 I DEAL I s
ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Prease donotuse any bve payment msteaciof tis payment ssimuator here.

Find Place For You To Stay Relax

‘Searchprices on hotels, vilasand more...

Prima Regular

Prima VIP Rooms

Fei] £ ﬁ. - ..‘.. Booked Check=in Check-out

(= Pick-up Baturn

Booked Today Today . oY L

Tentukan Pilit

m&ﬂ

Grand Modani Hotel esbisnis

Hod ol

Paymant Payment
0.0% Received 20% Received
Rekomendasi Hot 100,0% Pending cogrees 26% Pending
IDR 210000 Rp 123.000.000
0,0% Cancelled 55% Cancelled
M ﬂ Renters GUes gy aumeianion sdied
Grand Modani Hotel exbisnis Ep—— ity
"= - o
s -
-
-
-
] . 4 [] ® 4

Figure 2. Previous Lombok Halal Room Mobile Application

This study focuses on the design and implementation of the Super Admin backend module within the LHR
ecosystem. The scope covers Super Admin-specific functionalities, including partner verification, content moderation,
transaction oversight, and system monitoring. Performance testing was conducted in a development environment under
controlled, simulated load scenarios to evaluate scalability and responsiveness. Limitations include testing conducted in
a development environment with simulated load rather than actual production traffic, security testing limited to
authentication and authorization mechanisms, and multi-tenant scalability not tested beyond the current user base.

In response to these challenges, this study adopts SCRUM as a continuation of the earlier system, thereby
maintaining process consistency and established artifacts including product backlog, sprint backlog, and definition of
done[3]. SCRUM has proven effective for managing dynamic requirements through iterative-incremental development,
cross-role collaboration, and quality control via sprints, demonstrating improved team productivity [9]. At the
architectural level, SCRUM practices align with continuous requirements engineering and iterative design [10]. We
operationalize this through a RESTful API based backend to achieve scalability and maintainability [11] complemented
by redis caching for performance optimization to reduce latency and I/O load in read-write-intensive scenarios [12].

Accordingly, SCRUM is used to control iterative delivery, while modular RESTful API design and caching are
evaluated to address maintainability and performance objectives. The implementation employs Hapi.js, PostgreSQL,
and Redis to deliver a maintainable, scalable backend that is ready for integration with diverse front-end platforms. This
research provides both theoretical and practical contributions. From a theoretical perspective, it demonstrates the
application of SCRUM methodology in developing modular backend systems for multi-stakeholder platforms,
contributing to the body of knowledge in agile software engineering for tourism systems. From a practical perspective,
the resulting architecture serves as a reference model for similar halal tourism platforms, offering a proven approach to
centralized administration while maintaining system modularity and performance.

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 91

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

2. RESEARCH METHOD

This study employs the SCRUM framework to develop the RESTful API backend for the Super Admin
module. The choice continues the practice from prior iterations and is supported by empirical evidence of
SCRUM’s effectiveness in managing complex software projects iteratively, collaboratively, and adaptively to
changing requirements. Prior studies on systems of similar scope The Development of Backend Admin Dashboard
for Business Project Monitoring using Scrum Method: A Case Study at PT Gerbang Sinergi Utama[13], and Scrum
Implementation in Development of Online Research Application [14], report improved requirements management
and software quality in backend and web-based application development. Further, the empirical theory in A Theory
of Scrum Team Effectiveness [15], asserts that SCRUM teams with high autonomy, adaptability, and robust
managerial support tend to achieve superior outcomes in software projects.

2.1. SCRUM Implementation

In this research, SCRUM is tailored to the context of academic and research-oriented system development. The
team structure comprises a Product Owner, a Scrum Master, a Development Team, and a Reviewer. The Product Owner
prioritizes features and requirements; the Scrum Master ensures adherence to SCRUM practices; the Development Team
executes the technical implementation; and the Reviewer conducts academic evaluation and validates sprint outcomes.
This structure aligns with findings from Applying the Scrum Method in Software Development for Undergraduate
Thesis Project Implementation [16], which indicates that academic roles can be flexibly integrated into SCRUM without
diminishing collaborative effectiveness.

Event adaptations are introduced to better fit the research context. Sprint Planning is used to set a prioritized
backlog on a biweekly cadence; Daily Scrum are held three times per week for team synchronization; and Sprint Reviews
involve the academic Reviewer to assess alignment between sprint outcomes and research goals. Sprint Retrospectives
evaluate not only technical factors but also communication effectiveness and documentation coherence. Such
adaptations are consistent with ScrumAdemia: An Agile Guide for Doctoral Research [17], which describes applying
SCRUM in academia by coupling technical evaluation with scholarly reflection.

Requirements
Gathering

Daily
i Scrum

Product Backlog * Sprint Planning |+ Sprint ﬁ

Sprint Review

Complete all
sprint?

Sprint Rectropective h]

Metric and Evalution

v

Flnal Documentation

Figure 3. Research Flow Diagram
2.2. Research Workflow Diagram

The research workflow follows an iterative SCRUM cycle from requirements elicitation through final
documentation, as depicted in Figure 3. The diagram highlights how SCRUM stages are systematically connected to
produce a modular, scalable, and integration-ready backend. Figure 4 presents the adapted SCRUM Flowchart used in
this study, showing how each phase contributes to the research objectives and iteratively produces a production-ready
Super Admin backend:

a. Product Backlog (MoSCoW Prioritization): The Product Owner and development team elicit requirements
and prioritize backlog items using the MoSCoW method, then group them into functional domains to support
modularization. This phase supports Research Objectives (a) and (b) by operationalizing SCRUM practices
and structuring modules from the outset.

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 92

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System
Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

b.

2.3.

Sprint Planning: High-priority backlog items are selected for a two-week sprint and decomposed into
implementable tasks while defining the sprint goal and acceptance criteria This supports Research Objective
(c) by ensuring each sprint increment aligns with the proposed replicable RESTful API framework.

Sprint Execution (2-week sprint): The team implements RESTful API endpoints and supporting services
according to the planned tasks, producing a working increment at the end of the sprint.

Daily Scrum (3 times per week): During sprint execution, short synchronization meetings are conducted three
times per week to track progress, resolve impediments, and maintain alignment across team members.
Sprint Review: The completed increment is demonstrated and validated with the Product Owner/reviewer
against acceptance criteria, and the Product Backlog is updated based on feedback.

Sprint Retrospective: The team evaluates the process and identifies concrete improvement actions to enhance
the effectiveness of subsequent sprints.

Sprint Increment and Evaluation: Each sprint delivers completed features that accumulate into a production-
ready backend. Post-implementation evaluation is then performed using performance and code-quality
metrics (latency, throughput, MI, CBO, and LCOM*), addressing Research Objective (d).

Research Phases

This study was carried out through a structured set of phases that translate research objectives into an

implementable and evaluable Super Admin backend. The phases follow an iterative SCRUM workflow, starting from
requirement elicitation and backlog formation, continuing with sprint-based implementation, and concluding with
metric-driven evaluation and final documentation. This phased approach ensures traceability from requirements to
delivered features, while enabling continuous refinement through empirical feedback across development iterations.

2.3.1. Requirements Gathering

This phase is conducted collaboratively by the Product Owner and Development Team to identify Super Admin

requirements. The analysis covers the existing platform and includes interviews with previous developers to understand
architectural structure and inter-module dependencies. The approach follows iterative development requirement-
analysis practices described by Basri et al. [17].

Product Backlog
(MoSCoW Prioritization)

Sprint Execution (Sprint Execution (Sprint Planning
(2 week sprint) (2 week sprint) (Sprint Goal & Planning)
Sprint Review Sprint Retrospective
(Validate and review —) (Evaluation And Compl.e o All
Sprint?
Meet) Improvment)

Figure 4. SCRUM Flowchart

2.3.2. Product Backlog Development

The Product Backlog is formed through collaborative workshops and prioritized using the MoSCoW method Must

have, should have, could have, Won’t have [18]:

a.

High Priority (Must Have):
1. Authentication for Super Admin access
2. User management with full CRUD operations
3. Partner management for hotels and travel agencies
4. Balance management for financial monitoring

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 93

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

b. Medium Priority (Should Have):
1. Configuration management for hospitality settings
2. Order management for booking oversight
3. Ads management for promotional content
c. Low Priority (Could Have):
1. Destination management for tourism content
2. Client-type management for system categorization

2.3.3. Sprint Execution

Sprints run on a two-week cycle. To maintain synchronization, the team holds Daily Scrum Meetings f three times
per week for knowledge transfer and technical alignment, and a Weekly Academic Check-in with the Product Owner to
ensure academic objectives are met. The execution includes: a living Product Backlog; Sprint Planning (defining the
Sprint Goal, selecting PBIs, and task decomposition); the Sprint (incremental implementation to produce a reviewable
increment); the Daily Scrum (brief synchronization on progress and impediments); Sprint Review (increment demo,
validation against acceptance criteria, backlog updates); and Sprint Retrospective (process improvements for the next
sprint) [19]

2.3.4. Metric and Evalution

SCRUM effectiveness is evaluated using standard metrics [9]:

Velocity: Story points completed per sprint to gauge team productivity.

Sprint Completion Rate: Percentage of planned work finished each sprint.

Burn-down Chart: Visual representation remaining sprint work

Performance Testing: Assessment of system scalability and responsiveness.

Code Quality Metrics: Cyclomatic complexity, maintainability index, and technical debt [20], [21].

All performance experiments were executed locally on a MacBook Pro (MacBookPro17,1) equipped with an
Apple M1 chip (8 cores: 4 performance and 4 efficiency) and 8 GB of RAM, running in a development environment.
This configuration represents a constrained, non-production setup; therefore, the reported throughput (above 40,000
requests/s) and latency improvements should be interpreted as results obtained under controlled, local conditions.
Nevertheless, documenting the hardware baseline supports reproducibility and allows future studies to compare
performance under different server-grade or multi-tenant deployment environments.

opo o

2.3.5. Final Documentation

Final documentation focuses on two artifacts: (i) a Postman Collection specifying API endpoints and (ii) front-end
integration of the APIs. The collection documents API versioning, JWT authentication (Authorization: Bearer <token>),
uniform JSON response contracts, consistent HTTP status codes, and a unified error model; accompanying assets
include the Postman collection and a testing environment to support replication. Evidence of front-end integration is
documented through a representative module (e.g., User Management), mapping UI states to HTTP codes and
standardized error handling. This executable, collection-based documentation approach aligns with IEEE literature
indicating that standardized API contracts facilitate black-box evolution and testing of REST services practically
automated via Postman Collections and the Newman CLI in local setups and CI pipelines [22].

PostgreSQL
\ [= response Response
= Request Request

-
& Rest API _
Intergrated Halal Tourism For

Super Admin

v

-~

Super Admin

Figure 5. Super Admin Backend System Architecture

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 94

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

3. RESULTS AND DISCUSSION

This section presents the implementation outcomes and discusses the findings across development execution,
architectural results, and empirical evaluations. The results are organized to reflect both process metrics and technical
validation of the proposed backend.

3.1. Sprint Execution

This subsection summarizes how the system was delivered iteratively through SCRUM sprints, highlighting key
development milestones and the evolution of core components across iterations.

3.1.1. Architecture Development Evolution

Backend architecture was developed incrementally, whereby each sprint delivered a functional module that could
be integrated with prior modules. This approach enabled continuous validation of architectural design and adaptation to
evolving requirements throughout development.

Figure 5 depicts the overall system comprising three primary layers: a Web Front-End used by the Super
Admin, a Backend API layer built with the Hapi.js framework, and a Data layer consisting of PostgreSQL as the
primary database and Redis as a caching layer. Inter-layer communication uses RESTful API with JSON payloads
and JWT based authentication.

a. Sprints 1-3 (Core Foundation Development): Established the architectural foundation, including authentication,
user management, and partner management. Activities covered database schema design, API routing structure, and
security implementation via JWT.

b. Sprints 46 (Business Logic Extension): Extended functionality into business-specific domains such as balance,
configuration, and order management, emphasizing business rules and data validation.

c. Sprints 7-9 (Content Management): Focused on content management capabilities, including advertisements,
destinations, and client-type management for administrative flexibility.

3.1.2. Technical Architecture Results

The resulting backend adopts a layered architecture with clear separation of concerns:

Presentation Layer: RESTful API endpoints with consistent HTTP methods and response formats.
Logic Layer: Service classes enforcing business rules and validation.

Data Access Layer: Repository pattern for database operations.

Infrastructure Layer: Cross-cutting concerns including logging, caching, and authentication.

oo

Table 1 shows the layered pattern yields three key benefits:

Clear separation of concerns enabling independent development and maintenance
Appropriate abstractions that facilitate effective unit and integration testing

c. Flexibility to adapt technology changes without impacting the entire system.

o

3.1.3. Database Design and Implementation

The schema follows a normalized relational model with focused indexing for performance. Extensions build on
the existing schema in a backward-compatible manner, consistent with safe database evolution principles.

Figure 6 shows the complete schema including existing tables (users, roles, partners, balances) and newly added
tables (advertisements, destinations, destination_pictures, client types). Foreign-key constraints preserve referential
integrity. Core tables such as users and roles serve as central entities related to most domain modules.

a. New Tables Added: advertisements (promotional content), destinations (tourism catalog), destination pictures
(destination media assets), client_types (client categorization).

b. Key Design Decisions: foreign-key constraints for data integrity; indexed columns for frequently queried fields;
JSONB columns for flexible metadata; and audit trails for data-change tracking. The design follows normalization
principles to reduce redundancy while maintaining performance via judicious indexing. PostgreSQL JSONB offers
flexibility for heterogeneous metadata without compromising the relational backbone.

Table 1. Architecture Components Summary

Layer Components Technology Responsibilities

API Layer Route Handlers Hapi.js HTTP request/response handling
Service Layer ~ Business Services Node.js Business logic execution

Data Layer Repositories PostgreSQL Data persistence operations
Cache Layer Cache Services Redis Peformance optimization
Security Layer Auth Middleware JWT Authentication & authorization

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 95

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System
Volume 9, Nomor 1, Januari 2026 I
ISSN 2684-7280 (online)

Halamall 90_ 1 02 INDONESIA JOURNAL INFORMATION SYSTEM

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

oolicies. i
clients_policies. oo i ootions

policy_ic: uid type. i wuid b d: uuid

client_id: uuid o SO = type_id: uuid

details: text ‘regular’) category: varchar(100)

_created_date: timestampz title: varchar(100) H il varchar(100} (UNIQUE) | |

_updated_date: timestampz " 1 H _created_date: timestampz
_created_date: timestampz —updated_date: timestampz
_updated_date: timestampz produtcts_options i

opiion_id: uid
o Gilonts faciiies N proctc i
— - — - faciity_d: uuid - price: numeric
T ET client_id: uuid N i
- i uui M. giont_id: uuid _oreatedDate: limestampz
 — e — S icon: text, not nul address: text
withdrawals. bank_id: uuid _Created_date: timestampz _updatedDate: timestampz
id: uuid cade: varchar(s0) cinate: H
vear_id: uuid ! p Taciiies i amerilies
card_id title: varchar(100) GEOGRAPHY(Point) E] 1
card_number: varchar(16) id: uuid - id: wid 5
balance_id _created_date : timestam y: ;
Lo card_holder: varchar(100) ’ il ohy: varcha{100) type_id: uuid - N type_id: uuid
amount; numeric(15,2) AT R _updated_date : timestampz provinoe: varchar(100) R ey
- . 4 ‘ ! | regular, ‘exciuded
stalus: enum{pending, _updaled_date : limestampz ~erosfed_dato: Umestampz lmlg - i
success) i title: varchari
) i _updated_date: imestampz tle: varchar(100)
H
_updated_date : timestampz H client pictures.

_created_date: timestampz

id: uuid
client_id: uuid
picture: text, not null

_created_date: timestampz

 —— [dens
_crealed_dale : timestampz H el
*!id: uuid

_updated_date: timestampz
et i i

_updated date: timestamy H H
es] Droduct amenities]

1

user_id (UNIQUE)

type_id: uuid, not nul i § i uuid — amenity_id: uvid N i
amount: numeric(15.2) tite: varchar(100) <2 uner_id: uid, not null title: varchar(100) 10 product_id: uuid =
_created_dale : timestampz description: text ... approved_by: uuid description: text _created_date: limestampz iN
—updated_date : imestampz _created_date: imestampz %N H

name: varchar(100) _createdDate: timestampz
‘email: varchar(100) _updatedDate: timestampz
phone: varchar(50)
picture: text

_updated_date: timestampz

products. f
= — = -
B q npwp: varchar{100) {id uuid roduct_pictures
id: uuid o
description: text i client_id: uuid HLE
user_id: uuid g P————_— kg :
_created_date : timestampz | title: varchar(100) i | Productid: uuid
first_name: varchar(100)

username: varchar(100), _updated_date : timestampz | description: string plokae: foxd
last_name: varchar(100) unique i title: varchar(100)
availability: boolean
email: varchar(100) picture: text : A description: text
phone: varchar(50) . — T — 2 H ”
| ‘ - password: text, not null = Droduct ftems : unike: varchar(100) i _created_date: imestampz
_is_email_verified: boolean _created_date: timestampz : id: uid iy
_is_phone_verified: boolean updated_date: tmestampz | | | product_id: uuid i - -
= 3 i N _updated_date - timestampz : i
_created_dale: timestampz —— ile: varchar{100) _updated_date: timestampz
_updated_date: timestampz id: uuid ¥ i | _created_date : timestampz
title: varchar(50) _updated_date : timestampz
user_details]
5 e description: text
++ id: uuid il amount: numeric (default = 1)
= - led_date: timestampz il
user_id: uuid AT i Joacbie s _createdDate: timestampz
(ON DELETE NO ACTION) _updated_date: timestampz] o
L . . update ate: timestampz.
first_name: varchar(106) | ftem_id: uuid =
1
last_name: varchar(100) slart_date: timestamplz
email: varchar(100) end_date: timestamptz
| I—rr— .
phone: varchar(0) [T e _created_date : imestampz
: . _updated_date : timestampz
_crealed_dale : timestampz | e
T N title: varchar(100) (UNIQUE)
user_id: uu go=res i
Sk i _created_date: timestampz
L . _updated_date: timestampz
review_content: toxt [desination_cicrss] —r e —
review_rate: text id: uuid id: wuid 1 m:aw categories
- i B I
[- ; e Rtk destination._id: uuid title: varchar(100) remm——
i S 2. picture: text description: text o Nacraon
L, P 1 _created_date; timestampz category: varchar(100) 2prealed.dele: Smeclanpz
7] User_detals_id: uul client detalls . _updated_date: timestampz
client_details_id: uuid ey i wid =

client_id: wuid : GEOG
sk | denan(UNEAI, Procest, progeess, (ON DELETE NO ACTION) order_product details id: uuid ool
done, cancelied)

= - city: varchar(100}
name: varchar(100) { | id: uuid fitle: text .)

start_date: timestamptz

Erooct | province: varchar(100)

il varchar(t L ki

i) email; varchar(100) ! ONDEL=TE b AcTion description: text T T

5 phone: varchar(50) H Wz verchar(100) stalus : text o

total: numeric H x varch L imestampz
npwp: varchar(100) desoripton: start_date : timestampz

_erealed_dale : timestampz & sting i
_created_date : timestampz | S end_date : timestampz

[—order_options ftems |

order flems |
d: uuid T |

units: varchar{100) Irik_target : text
priority : integer

created_at : timestamp:

1

order_items_id: uuid _created_date : timestampz

N

option_id
{(ON DELETE NO ACTION)
title: varchar(100)

order_product_detalls |
uuid 1

updated_ai : timestampz

category: varchar(100) ‘quantity: integer
price; numeric total: numeric

_created_date : timestampz _created_date : imestampz

Figure 6. Entity Relationship Diagram Backend System

3.2. Metric and Evaluation

This subsection reports quantitative metrics used to assess the development process, code quality, and system
performance. The evaluation provides evidence of delivery consistency, maintainability characteristics, and the impact
of caching on runtime behavior.

3.2.1. Scrum Executin Result

Table 2 summarizes sprint delivery performance across nine sprints. In total, 115 out of 132 planned story
points were completed (87.1%), yielding a mean velocity of 12.8 story points per sprint.

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 96

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Table 2. Sprint Performance Metrics

Sprint Domain Planned Points Completed Points Completion Rate Velo-city
1 Authentication 13 13 100% 13
2 User Management 15 14 93% 14
3 Mitra Management 16 15 94% 15
4 Balance Management 12 5 42% 5
5 Config Management 18 17 94% 17
6 Order Management 14 9 64% 9
7 Advertisement Management 15 15 100% 15
8 Destination Management 16 14 88% 14
9 Type Management 13 13 100% 13
Total All Domains 132 115 87.1% 12.8

High completion in Sprints 1, 7, and 9 (100%) indicates effective planning under stable scope, whereas the drops
in Sprint 4 (42%) and Sprint 6 (64%) reflect increased integration complexity in critical business modules (e.g., balance
and orders).

Sprint performance analysis indicates an average completion rate of 92% with a stable velocity of 14 story points
per sprint. These results support the effectiveness of SCRUM for an individual-development context, aligning with
Shafiee et al. (2023) [23]. Sprints achieving 100% completion (Sprints 1, 7, and 9) suggest sound planning and stable
capacity.

Significant variation in Sprints 4 (42%) and 6 (64%) reflects inherent complexity in backend integration across
critical business components. This observation aligns with Lee and Chen (2023) [24] regarding agile challenges in highly
interdependent domains. The recovery in subsequent sprints supports SCRUM’s inspection and adaptation mechanism
through sprint reviews and retrospectives, improving estimation accuracy and removing impediments over time

Figure 7 visualizes planned versus completed story points per sprint (bars) alongside completion rate and
velocity trends (lines). Overall delivery reached 87.1% of planned work (115/132), with a mean velocity of 12.8
story points per sprint.

The lowest completion occurred in Sprint 4 (42%), which is consistent with higher technical complexity and
integration effort, while subsequent sprints show recovery to 88—100% after replanning and process adjustments during
retrospectives. This pattern indicates controlled variability: although domain complexity affects short-term completion,
the team consistently restores delivery performance through SCRUM feedback cycles.

3.2.2. Code Quality Metrics

Modularity and maintainability of the Hapi.js backend were assessed using three standard metrics: Coupling
Between Objects (CBO), Lack of Cohesion of Methods (LCOM?*), and Maintainability Index (MI). CBO and LCOM*
members of the CK metric family remain widely used in empirical studies (including IEEE venues) as indicators of
coupling and cohesion at the module/class level [20]. MI follows Plato/escomplex (a composite of cyclomatic
complexity, lines of code, and Halstead volume), consistent with tertiary syntheses linking coupling/cohesion to
maintainability and contemporary discussions of MI [25]

Sprint Performance Analysis

115/132 4

Total Completod/Planned Sprints with 100% Completion

85% | 12.8

Figure 7. Sprint Velocity and Burn-down Analysis

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 97

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Table 3. lists per-domain metrics (lower is better for CBO/LCOM#*; higher is better for MI).

Module CBO LCOM* MI Files
api/advertisements 0 0 64.87 3
api/amenities 0 0 63.30 3
api/authentications 0 0 65.78 3
api/banks 0 0 66.06 3
api/cards 0 0 65.26 3
api/clients 0 0 47.93 2
api/clientsFacilities 0 0 65.70 3
api/clientTypes 0 0 64.57 3
api/contacts 0 0 70.14 3
api/destinations 0 0 63.71 3
api/details 0 0 59.00 3
api/docs 0 0 77.64 2
api/facilities 0 0 67.86 3
api/options 0 0 63.30 3
api/orders 0 0 47.60 2
api/policies 0 0 63.46 3
api/products 0 0 43.20 2
api/roles 0 0 70.20 3
api/users 0 0 56.68 3
api/verifications 0 0 70.25 3
api/withdrawals 0 0 61.30 3
core/ 0 0 68.47 84

Files are grouped by first-level API domains (e.g., api/users, api/orders). CBO counts other API domains imported
by a given domain; dependencies on core/ components and external packages are excluded to isolate inter-API coupling.
Cohesion is approximated by an import-based proxy (LCOM*), defined in (1) with I intra the number of intra-domain
imports and I total the domain’s total imports. MI is taken from Plato/escomplex reports[26].

LCOM*() =1-— (L_intra / I_total) (1)

Results. Of 21 API domains, 9/21 achieved MI > 65 (fair—good) and 4/21 exceeded MI > 70 api/docs (77.64),
api/verifications (70.25), api/roles (70.20), api/contacts (70.14). Three domains fell below 50 and require targeted
refactoring: api/products (43.20), api/orders (47.60), api/clients (47.93). In this operationalization, all API domains report
CBO =0 and LCOM* =0, indicating clean module boundaries and centralized reuse within core/. The core/ component
achieved MI = 68.47 across 84 files[21].

Table 3 shows that most domains achieved fair-to-good maintainability (MI > 65), while api/products,
api/orders, and api/clients remain refactoring targets due to denser business logic and higher complexity
concentration.

Consistently low inter-API coupling (CBO = 0) supports stable separation of concerns and reduces change-
propagation risk. MI variability highlights business-logic—dense hotspots; literature-aligned refactors reducing branching
(early returns), extracting validation/error mapping into core/, and isolating data access in repositories are expected to
lift MI for low-scoring modules without increasing coupling. Recent studies continue to employ CBO (and variants) as
maintainability proxies [27].

3.2.3. Redis Performance Testing

Performance was evaluated under three load scenarios to assess scalability and responsiveness. The results
compare two configurations without caching and with Redis caching to validate whether the proposed architecture meets
operational demands under realistic workloads.

Table 4. Performance Test Results

Metric Test-1 (W/O — With) Test-2 (W/O — With) Test-3 (W/O — With)
Avg. resp. (ms) 8986 — 2 14946 — 2 11864 — 3

95th perc. (ms) 13056 — 3 26671 — 3 21104 — 7

RPS (avg) 769.24 — 41184.40 830.02 — 41108.67 592.64 — 27447.14
Memory (MB) 90 — 85 85 — 91 111 — 82

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 98

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026 I DE L I s
ISSN 2684-7280 (online) A
Halaman 90-102 INDONESIA JOURNAL INFORMATION SYSTEM

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

@ without Cache () With Redis Cache

10,000
l'mm I |
1 I
Test 2 Test3 Test1 Test2 Test

Test1 Test 2 Test3 Test1

Performance Metrics (logarithmic scale)
8 g

3 Test 1 Test 2 Test3
Avg. Response Time (ms) 95th Percentile (ms) Throughput (req/s) Memory (MB)

Figure 8. Performance Metrics Comparison: Without Cache vs With Redis Cache

Across the three scenarios, enabling Redis reduced the average response time from 8,986-14,946 ms to 2-3 ms and
tightened p95 latency from 13,056-26,671 ms to 3-7 ms. Throughput increased from 592.64-830.02 req/s to 27,447.14-
41,184.40 req/s (=46-54x). Memory changes were moderate and scenario-dependent (90—85 MB; 85—91 MB;
111—82 MB).

Figure 8 provides a visual summary of Table 4 and highlights a consistent performance gap between both
configurations. The Redis configuration shows substantially lower bars for response time and p95 latency while
simultaneously achieving higher throughput across all tests, indicating that caching shifts hot read paths from database
I/O to in-memory access. This behavior aligns with common caching trade-offs, where a small and scenario-dependent
memory overhead can be acceptable in exchange for significant improvements in responsiveness and request handling
capacity [28].

Production security and multi-tenant considerations. While Table 4 and Figure 8 show substantial scalability gains
with Redis, the evaluation was conducted in a controlled development environment and security validation was limited
to JWT-based authentication and authorization. Therefore, these results should be interpreted as feasibility evidence
rather than full production readiness. Future work should validate production controls (e.g., rate limiting, audit logging,
and key management) and evaluate multi-tenant isolation, including tenant-scoped access and cache-key partitioning to
avoid cross-tenant interference.

Policy implications for halal tourism governance. A centralized Super Admin backend enables consistent
governance across the platform by supporting partner verification, content moderation, transaction oversight, and system
monitoring in one administrative layer. This consolidation strengthens accountability through standardized workflows
and auditability, and it can improve trust and operational transparency for stakeholders within halal tourism ecosystems.

3.3. Final Documentation

This subsection describes the produced documentation artifacts that support API reuse and integration. It outlines
how executable API specifications and front-end integration evidence were prepared to ensure replicability and practical
adoption.

3.3.1. API Endpoint Distribution

Performance and maintainability are also influenced by how APIs are organized across domains. Therefore, this
section reports the distribution of Super Admin endpoints to illustrate functional coverage and architectural consistency.

Table 5. API Endpoints Distribution

Domain Endpoints Methods Key Features
Authentication 2 POST, DELETE Login, logout with JWT
User Management 4 GET, POST, PUT, DELETE CRUD operations for users
Mitra Management 4 GET, POST, PUT, DELETE Mitra administration
Balance Management 1 GET Financial monitoring
Config Management 16 GET, POST, PUT, DELETE System configuration
Order Management 3 GET, PUT, DELETE Order oversight
Advertisement Management 4 GET, POST, PUT, DELETE Promotional content
Destination Management 4 GET, POST, PUT, DELETE Tourism destinations
Type Management 4 GET, POST, PUT, DELETE Client categorization
Total 42 Multiple Complete CRUD

Table 5 summarizes 42 RESTful API endpoints across nine functional domains (auth, users, partners,
finance/balance, config, orders, ads, destinations, client types). The distribution indicates comprehensive operational

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 99

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System
Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102 : : -
available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

coverage: eight domains implement full CRUD (GET/POST/PUT/DELETE) for end-to-end administration, while
Balance Management is exposed as read-only (GET) to mitigate risk of direct financial data mutation. Design
consistency resource-oriented naming, uniform JSON response contracts, standardized HT TP status codes, and a unified
error model accelerates client integration and reduces integration defects. JWT in the Authorization: Bearer <token>
header preserves statelessness and facilitates horizontal scaling. Architecturally, domain segmentation aligns with
separation of concerns: changes in one domain (e.g., ads or destinations) do not cascade to others (e.g., users or partners),
thereby improving modularity, maintainability, and cross-channel reusability (web and mobile).

3.3.2. Frontend API implementation

Front-end integration was validated through representative modules. Figure 9 (User Management) shows
consumption of the user-list endpoint (GET /users) with pagination and sorting, and administrative actions mapping
detail/create/update/delete to routes (GET /users/{id}; POST/PUT/DELETE /users/{id}) per contract. Figure 10
(Clients) demonstrates a similar pattern for the client domain, including Ul-state mapping to HTTP codes (200/201/204
for success; 400/401/403/404/409/422 for anticipated errors). Error behavior is handled uniformly from a standard
payload (fields code, message, details), so Ul components require no domain-specific adapters. These integration
artifacts confirm that (i) endpoint specifications are consistently consumable by the front end, (ii) JWT authentication
functions end to end, and (iii) uniform response contracts reduce boilerplate in the presentation layer. Overall, the results
validate API readiness for centralized administrative orchestration via the Super Admin interface and underscore the
benefits of domain-based modular design for integration speed and evolutionary stability.

LombokHalalRoom &

User Management

LombokHalal Room

Rp500.000

Rp100.000

o card (= ©
. Hotel_Prima_Lombok snta 173 5470b5b2-0bé]-440b- 583dfcbd-cTe 851

: [e
Figure 10. Balance Interface Demonstrating Frontend Integration with Backend API

4. CONCLUSION

This study designed and implemented a domain-oriented, modular RESTful API backend to enable centralized
Super Admin operations in the Lombok Halal Room (LHR) platform. The proposed solution follows a layered

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 100

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System

Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

architecture with consistent JSON response contracts and JWT-based authentication, and it delivers 42 endpoints across
the core administrative domains. Front-end integration was validated, indicating that the backend is reusable and
deployable for both web and mobile administrative workflows.

The scientific novelty of this work lies in combining an iterative SCRUM-based development process with a
modular RESTful API backend architecture in the specific context of halal tourism administration, supported by
systematic post-implementation evaluation using performance and software-quality metrics. This integrated approach
provides a replicable engineering method for developing scalable administrative backends beyond a single application
setting.

Experimental results show that Redis caching substantially improves responsiveness and scalability under load.
Across the evaluated scenarios, average response time decreased to 2—-3 ms and p95 latency tightened to 3—7 ms, while
throughput increased to 27,447-41,184 requests/s. In terms of software quality, CBO=0 and LCOM*=0 indicate clean
module boundaries, and the Maintainability Index (MI) offers actionable guidance for identifying modules that should
be prioritized for refactoring.

This study has limitations. The experiments were conducted in a controlled environment using simulated
workloads and therefore do not fully represent multi-tenant production variability or end-to-end security constraints. As
a result, the reported findings should be interpreted as evidence of feasibility and engineering effectiveness within the
evaluated setup.

Future work should build directly on these results by (1) refactoring modules with lower MI to reduce complexity
concentration, (2) extending evaluation to multi-tenant and production-like workloads, and (3) improving operational
readiness through observability, rate limiting, and security hardening. These directions are expected to increase
robustness while preserving the latency and throughput gains demonstrated by Redis caching.

From a practical perspective, the proposed backend can strengthen governance in halal tourism digital ecosystems
by enabling centralized verification, content moderation, transaction oversight, and system monitoring. As a reusable
architectural template, it can serve as a reference implementation for similar halal tourism platforms in other regions.

BIBLIOGRAPHY

[1] A. Prawiro, “Halal Tourism in Lombok: Harmonization of Religious Values and Socio-Cultural Identity,” Share: Jurnal
Ekonomi dan Keuangan Islam, vol. 11, no. 2, pp. 322-345, Dec. 2022, doi: 10.22373/share.v11i2.14905.

[2] Mahendra Putra Raharja, Ramaditia Dwiyansaputra, Royana Afwani, Gibran Satya Nugraha, Fahru Alfarizi Hananza Putrawan,
and Mursyidhan Ariefbillah Ahmad Masri, “Backend Development of a Halal Tourism Application Based on Service for Cross-
Platform Application for Travelers,” 3rd MIMSE 2024, 2024.

[3] Diaz Khalid Ananda, Ramaditia Dwiyansaputra, Royana Afwani, Gibran Satya Nugraha, Mochammad Dinta Alif Syaifuddin,
and M. Asrorul Khopid, “Integrated Halal Tourism Applications Based on REST API for Hotel Partners and Travel Agents,”
3rd MIMSE 2024, 2024.

[4] S.B.Hasan, Y. Nader Abdullah, and M. Khalil Darwesh, “Design and Implementation The digital transformation of the student
clearance system for Soran University,” Academic Journal of Nawroz University, vol. 12, no. 3, pp. 252-261, Aug. 2023, doi:
10.25007/ajnu.v12n3al 633.

[S] S. Sharma, O. P. Rishi, and A. Sharma, “IoTeST: IoT-Enabled Smart Tourism—Shaping the Future of Tourism,” 2021, pp.
569-576. doi: 10.1007/978-981-15-6014-9_67.

[6] I Shabani, E. Méziu, B. Berisha, and T. Biba, “Design of Modern Distributed Systems based on Microservices Architecture,”
International Jowrnal of Advanced Computer Science and Applications, vol. 12, mno. 2, 2021, doi:
10.14569/1JACSA.2021.0120220.

[7] C.LiandB. Niu, “IOT Gateway Based on Microservices,” 2021, pp. 26-33. doi: 10.1007/978-3-030-79197-1 4.

[8] T.T. Nguyen, M. T. Nguyen, and N. T. Le, “An Administrative Support System for Digital Transformation of Small and
Medium-Sized Enterprises in Vietnam,” Foundations of Management, vol. 16, no. 1, pp. 177-194, Jan. 2024, doi:
10.2478/fman-2024-0011.

[9] D. S. Pashchenko, “Refining the Scrum Paradigm: A Comprehensive Research of Software Development Practices (2020—
2023),” Computing&, Al Connect, vol. 1, no. 1, p. 1, Dec. 2024, doi: 10.69709/CAIC.2024.103102.

[10] D. D. Wazaumi, V. A. Saputro, S. K. Nisa, and S. A. Zahrani, “Implementasi Framework Scrum Dalam Pengembangan
Dashboard Monitoring Untuk Optimasi Pengelolaan Data Interface,” IDEALIS : InDonEsiA journalL Information System, vol.
8, no. 1, pp. 64-73, Jan. 2025, doi: 10.36080/idealis.v8i2.3338.

[11] L. Chamari, E. Petrova, and P. Pauwels, “An End-to-End Implementation of a Service-Oriented Architecture for Data-Driven
Smart Buildings,” IEEE Access, vol. 11, pp. 117261-117281, 2023, doi: 10.1109/ACCESS.2023.3325767.

[12] I R. D. Muhammad and I. V. Paputungan, “Development of Backend Server Based on REST API Architecture in E-Wallet
Transfer System,” Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi, vol. 3, no. 2, pp. 79-87, Jan. 2024, doi:
10.20885/snati.v3.i2.35.

[13] D. Arya, H. Putra, E. Darwiyanto, and R. Nurtantyana, “Development of Backend Admin Dashboard for Business Project
Monitoring using Scrum Method,” Aug. 2024, doi: 10.34818/indojc.2024.9.2.969.

[14] T. Sundara, D. Setiawan, F. Subkhan, and F. R. Kautsar, “Scrum Implementation in Development of Online Research
Application,” The Indonesian Journal of Computer Science, vol. 11, no. 2, Aug. 2022, doi: 10.33022/ijcs.v11i2.3072.

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 101

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

Idealis: Indonesia Journal Information System
Volume 9, Nomor 1, Januari 2026

ISSN 2684-7280 (online)

Halaman 90-102

available online at http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

[15]

[16]

[17]

(18]

[19]
[20]
[21]
[22]

(23]

[24]
[25]
[26]
[27]

(28]

C. Verwijs and D. Russo, “A Theory of Scrum Team Effectiveness,” ACM Transactions on Software Engineering and
Methodology, vol. 32, no. 3, pp. 1-51, Jul. 2023, doi: 10.1145/3571849.

A. R. P. Ramadhan, I. Waspada, N. Bahtiar, and A. S. Pramayoga, “Applying the Scrum Method in Software Development for
Undergraduate Thesis Project Implementation,” Jurnal Masyarakat Informatika, vol. 16, no. 1, pp. 119-133, May 2025, doi:
10.14710/jmasif.16.1.73187.

C. Franco et al., “Introducing ScrumAdemia: An Agile Guide for Doctoral Research,” PS Polit Sci Polit, vol. 56, no. 2, pp. 251—
258, Apr. 2023, doi: 10.1017/S1049096522001408.

Suchetha Vijayakumar, Krishna Prasad K, and R. Holla M., “Assessing the Effectiveness of MoSCoW Prioritization in Software
Development: A Holistic Analysis across Methodologies,” EAI Endorsed Transactions on Internet of Things, vol. 10, Oct. 2024,
doi: 10.4108/eetiot.6515.

1. Heriyawan, U. Hayati, and O. Nurdiawan, “Rancang Bangun Sistem Informasi Akuntansi Menggunakan Codeigniter Dengan
Metode Scrum Studi Kasus : Pt Surya Marga Sarana,” 2023.

F. N. Colakoglu, A. Yazici, and A. Mishra, “Software Product Quality Metrics: A Systematic Mapping Study,” IEEE Access,
vol. 9, pp. 44647-44670, 2021, doi: 10.1109/ACCESS.2021.3054730.

M. Klima et al., “Selected Code-Quality Characteristics and Metrics for Internet of Things Systems,” IEEE Access, vol. 10, pp.
46144-46161, 2022, doi: 10.1109/ACCESS.2022.3170475.

N. Laranjeiro, J. Agnelo, and J. Bernardino, “A Black Box Tool for Robustness Testing of REST Services,” IEEE Access, vol.
9, pp. 24738-24754, 2021, doi: 10.1109/ACCESS.2021.3056505.

S. Shafiee, Y. Wautelet, S. Poelmans, and S. Heng, “An empirical evaluation of scrum training’s suitability for the model-driven
development of knowledge-intensive software systems,” Data Knowl Eng, vol. 146, p. 102195, Jul. 2023, doi:
10.1016/j.datak.2023.102195.

W.-T. Lee and C.-H. Chen, “Agile Software Development and Reuse Approach with Scrum and Software Product Line
Engineering,” Electronics (Basel), vol. 12, no. 15, p. 3291, Jul. 2023, doi: 10.3390/electronics12153291.

A. Abbad-Andaloussi, “On the relationship between source-code metrics and cognitive load: A systematic tertiary review,”
Journal of Systems and Sofiware, vol. 198, p. 111619, Apr. 2023, doi: 10.1016/}.jss.2023.111619.

U. Iftikhar, N. Bin Ali, J. Borstler, and M. Usman, “A tertiary study on links between source code metrics and external quality
attributes,” Inf'Softw Technol, vol. 165, p. 107348, Jan. 2024, doi: 10.1016/j.infs0f.2023.107348.

P. Sun, D.-K. Kim, H. Ming, and L. Lu, “Measuring Impact of Dependency Injection on Software Maintainability,” Computers,
vol. 11, no0. 9, p. 141, Sep. 2022, doi: 10.3390/computers11090141.

M. T. Faridi, K. Singh, K. Soni, and S. Negi, “Memcached vs Redis Caching Optimization Comparison using Machine
Learning,” in 2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS), IEEE, Dec.
2023, pp. 1153-1159. doi: 10.1109/ICACRS58579.2023.10404339.

Muhamad Singgih | http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index | Page 102

http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/index

