Penerapan Metode Stacking Ensemble Untuk Analisis Sentimen Pada Ulasan Aplikasi Ruangguru
DOI:
https://doi.org/10.36080/idealis.v8i2.3559Keywords:
Analisis Sentimen, CRISP-DM, Pembelajaran Mesin, Stacking Ensemble, TF-IDFAbstract
Penelitian ini bertujuan untuk menganalisis sentimen pengguna terhadap aplikasi Ruangguru berdasarkan ulasan di Google Play Store. Studi ini berupaya untuk menggambarkan persepsi masyarakat terhadap layanan pembelajaran digital tersebut. Data berupa 99.000 ulasan pengguna dalam bahasa Indonesia dikumpulkan melalui teknik web scraping. Analisis sentiment dilakukan menggunakan pendekatan klasifikasi sentimen berbasis pembelajaran mesin. Penelitian mengikuti tahapan metodologi Cross Industry Standard Process for Data Mining (CRISP-DM), yang terdiri dari Business Understanding, Data Understanding, Data Preparation, Modelling, Evaluation dan Deployment. Sentimen dikategorikan menjadi tiga kelas: positif, negatif dan netral. Proses pra-pemrosesan data melibatkan tahapan seperti pembersihan, tokenisasi, normalisasi. Ekstraksi fitur menggunakan Term Frequency–Inverse Document Frequency (TF-IDF), serta pelabelan data yang dilakukan dengan pendekatan lexicon-based menggunakan kamus kata positif dan negatif yang diunduh dari sumber terbuka. Model klasifikasi yang digunakan dalam penelitian ini adalah Stacking Ensemble dengan Random Forest, Support Vector Machine (SVM), dan Extreme Gradient Boosting (XGBoost) sebagai base learner, serta Logistic Regression sebagai meta learner. Evaluasi performa model menggunakan confusion matrix dan Area Under the Curve (AUC). Model ini menghasilkan Akurasi 88%, Precision 87%, Recall 88% dan F1-Score 87% serta AUC 0,945. Hasil penelitian menunjukkan bahwa mayoritas ulasan memiliki sentimen positif terhadap aplikasi Ruangguru. Temuan ini dapat menjadi masukan strategis bagi pengembang dalam meningkatkan kualitas layanan dan kepuasan pengguna.
Downloads
References
[1] Ruangguru, “Annual Impact Report Ruangguru 2022.” Accessed: Jun. 14, 2025. [Online]. Available: https://www.ruangpeduli.org/impact-report
[2] R. Darmawan and A. Surahmat, “Optimalisasi Support Vector Machine (SVM) Berbasis Particle Swarm Optimization (PSO) Pada Analisis Sentimen Terhadap Official Account Ruang Guru Di Twitter,” Jurnal Kajian Ilmiah, vol. 22, no. 2, pp. 1410–9794, 2022, doi: https://doi.org/10.31599/g0dv0y21.
[3] B. Haryanto, “Penerapan Algoritma Support Vector Machine Untuk Analisis Sentimen Review Pengguna Pada Twitter Ruang Guru,” Universitas Pendidikan Indonesia, 2023. Accessed: Jun. 25, 2025. [Online]. Available: https://repository.upi.edu/99721/
[4] I. Novitasari, T. B. Kurniawan, D. A. Dewi, and Misinem, “Analisis Sentimen Masyarakat Terhadap Tweet Ruang Guru Menggunakan Algoritma Naive Bayes Classifier (NBC),” Jurnal Mantik, vol. 6, no. 3, pp. 2685–4236, 2022, Accessed: Jun. 22, 2025. [Online]. Available: https://iocscience.org/ejournal/index.php/mantik/article/view/2887
[5] H. H. Mubaroroh, H. Yasin, and A. Rusgiyono, “Analisis Sentimen Data Ulasan Aplikasi Ruangguru Pada Situs Google Play Menggunakan Algoritma Naïve Bayes Classifier Dengan Normalisasi Kata Levenshtein Distance,” Jurnal Gaussian, vol. 11, no. 2, pp. 248–257, 2022, doi: https://doi.org/10.14710/j.gauss.v11i2.35472.
[6] I. Nurul Hassanah, S. Faisal, A. Mutoi Siregar, U. Buana Perjuangan Karawang Jl HSRonggo Waluyo, T. Timur, and J. Barat, “Perbandingan Algoritma Support Vector Machine dengan Decision Tree Pada Aplikasi Ruang Guru,” Jurnal Ilmiah Kumpulan jurnal Ilmu Komputer (KLIK), vol. 10 No. 01, pp. 39–50, 2023, doi: http://dx.doi.org/10.20527/klik.v10i1.602.
[7] E. Fernando Baharsyah, T. Hasanah Bimastari Aviani, and C. Wulandari, “Analisis Sentimen Pengguna Terhadap Aplikasi Belajar Online Ruang Guru Pada Ulasan Google Play Store Menggunakan Algoritma Naïve Bayes dan Support Vector Machine,” INNOVATIVE : Journal of Social Science Research, vol. 4 No. 3, pp. 2965–2979, 2024, doi: https://doi.org/10.31004/innovative.v4i3.10769.
[8] A. B. Muzayyanah, R. E. Pawening, and Z. Arifin, “Analisis Sentimen Pada Ulasan Aplikasi Ehadrah Di Google Playstore Menggunakan Support Vector Machine,” IDEALIS: Indonesia Journal Information System, vol. 7, no. 2, pp. 258–266, 2024, doi: https://doi.org/10.36080/idealis.v7i2.3250.
[9] A. Sasi Kirana, R. Roeswidiah, and A. Pudoli, “Analisis Sentimen Pada Media Sosial Terhadap Layanan Samsat Digital Nasional Dengan Support Vector Machine,” IDEALIS: Indonesia Journal Information System, vol. 8, no. 1, pp. 53–63, 2025, doi: https://doi.org/10.36080/idealis.v8i1.3276.
[10] E. Caroline Dwi Wijaya, K. Satya Wacana, and J. Diponegoro, “Analisis Sentimen Terhadap Film Sri Asih Dengan CNN, KNN, dan Logistic Regression,” CSRID Journal, vol. 15, no. 3, pp. 2085–1367, 2023, Accessed: Jun. 25, 2025. [Online]. Available: https://csridjournal.potensi-utama.org/index.php/CSRIDjournal/article/view/44
[11] F. Fadhilah, N. P. Oktariani, and A. Rachmadita, “Perbandingan Algoritma K-Nearest Neighbor dan Logistic Regression pada Analisis Sentimen terhadap Vaksinasi Covid-19 pada Media Sosial Twitter dengan Pelabelan Vader dan Textblob,” eProceedings of Engineering, vol. Vol. 10 No. 2, 2023, Accessed: Jun. 25, 2025. [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/19960
[12] N. Anggraini, S. J. Putra, L. K. Wardhani, F. D. U. Arif, N. Hakiem, and I. M. Shofi, “A Comparative Analysis of Random Forest, XGBoost, and LightGBM Algorithms for Emotion Classification in Reddit Comments,” Jurnal Teknik Informatika, vol. 17, no. 1, pp. 88–97, May 2024, doi: 10.15408/jti.v17i1.38651.
[13] I. R. Yunita, W. Maulana Baihaqi, A. Shafira, T. Damayanti, and L. Akhaerunnisa, “Analisis Performa Algoritma Klasifikasi pada Sentimen Ulasan Pengguna terhadap Aplikasi Muamalat DIN,” Cogito Smart Journal |, vol. 9, no. 2, 2023, doi: https://doi.org/10.31154/cogito.v9i2.511.241-251.
[14] M. Salomi; Govind Ashish Kalawate; Yash Talreja, “Enhanced Sentiment Analysis of Twitter(X) Data Using an Ensemble Stacking Model,” 2025 International Conference on Artificial Intelligence and Data Engineering (AIDE), May 2025, doi: 0.1109/AIDE64228.2025.10987415.
[15] Md. Shymon Islam; S.M. Aisha Siddiquea Fariha; Shaharia Sarmin Snaha; M. Raihan; Md. Sharzul Mostafa; SM Fahim Abrar, “An Interpretable Sentiment Recognition Method from Political Bangla Texts Using Stacking Ensemble Model,” 2025 International Conference on Electrical, Computer and Communication Engineering (ECCE), May 2025, doi: 10.1109/ECCE64574.2025.11013334.
[16] M. L. and A. F. W. Chuanmin Mi, “Predicting video views of web series based on comment sentiment analysis and improved stacking ensemble model,” Electronic Commerce Research, vol. 24, pp. 2637–2664, Dec. 2024, doi: https://doi.org/10.1007/s10660-022-09642-9.
[17] A. Ali and Anuradha Thakare, “Advancing Human-Computer Interaction: A Stacking Classifier Approach to Textual Sentiment Analysis using Ensemble Machine Learning,” 2024 5th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), May 2024, doi: 10.1109/ICICV62344.2024.00088.
[18] D. B. Santoso, A. Munna, and D. H. Untari Ningsih, “Improved playstore review sentiment classification accuracy with stacking ensemble,” Journal of Soft Computing Exploration, vol. 5, no. 1, pp. 38–45, Mar. 2024, doi: https://doi.org/10.52465/joscex.v5i1.247.
[19] Data Science PM, “CRISP-DM is Still the Most Popular Framework for Executing Data Science Projects.” Accessed: Jun. 26, 2025. [Online]. Available: https://www.datascience-pm.com/crisp-dm-still-most-popular/
[20] N. A. Fadhlurrohman et al., “Analisis Sentimen Terhadap Skema Student Loan Untuk Biaya Perguruan Tinggi Pada Twitter Menggunakan Algoritma Naïve Bayes,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 9, no. 2, 2025, doi: https://doi.org/10.36040/jati.v9i2.13001.
[21] M. A. Palomino and F. Aider, “Evaluating the Effectiveness of Text Pre-Processing in Sentiment Analysis,” Applied Sciences (Switzerland), vol. 12, no. 17, Sep. 2022, doi: 10.3390/app12178765.
[22] Fatihah Rahmadayana and Yuliant Sibaroni, “Sentiment Analysis of Work from Home Activity using SVM with Randomized Search Optimization,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 5, pp. 936–942, Oct. 2021, doi: 10.29207/resti.v5i5.3457.
[23] U. Khairani, V. Mutiawani, and H. Ahmadian, “Pengaruh Tahapan Preprocessing Terhadap Model Indobert Dan Indobertweet Untuk Mendeteksi Emosi Pada Komentar Akun Berita Instagram,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 4, pp. 887–894, Aug. 2024, doi: 10.25126/jtiik.1148315.
[24] S. Elmitwalli and J. Mehegan, “Sentiment analysis of COP9-related tweets: a comparative study of pre-trained models and traditional techniques,” Front Big Data, vol. 7, 2024, doi: 10.3389/fdata.2024.1357926.
[25] A. Miyajiwala, A. Ladkat, S. Jagadale, and R. Joshi, “On Sensitivity of Deep Learning Based Text Classification Algorithms to Practical Input Perturbations,” Computing Conference 2022, Jan. 2022, doi: 10.1007/978-3-031-10464-0_42.
[26] Rianto, A. B. Mutiara, E. P. Wibowo, and P. I. Santosa, “Improving the accuracy of text classification using stemming method, a case of non-formal Indonesian conversation,” J Big Data, vol. 8, no. 1, Dec. 2021, doi: 10.1186/s40537-021-00413-1.
[27] F. A. Inayanti, “Perbandingan Pelabelan Manual Dan Vader Pada Analisis Sentimen Tentang Anti-Asian Hate Speech Terkait Covid-19 Di Twitter Dengan Metode Support Vector Machine,” Universitas Pembangunan Nasional “Veteran,” Yogyakarta, 2023. Accessed: Jun. 26, 2025. [Online]. Available: http://eprints.upnyk.ac.id/36980/
[28] Y. A. Prasetyo, E. Utami, and A. Yaqin, “Pengaruh Komposisi Split Data Terhadap Performa Akurasi Analisis Sentimen Algoritma Naïve Bayes dan SVM,” Journal homepage: Journal of Electrical Engineering and Computer (JEECOM), vol. 6, no. 2, 2024, doi: 10.33650/jeecom.v4i2.
[29] D. K. L. F. M. S. A. R. Yessy Asri, Machine Learning & Deep Learning: Analisis Sentimen Menggunakan Ulasan Pengguna Aplikasi. Ponorogo: Uwais Inspirasi Indonesia, 2024. Accessed: Jun. 26, 2025. [Online]. Available: https://www.google.co.id/books/edition/MACHINE_LEARNING_DEEP_LEARNING_Analisis/Yu7uEAAAQBAJ?hl=en&gbpv=1&dq=definisi+tf+idf&pg=PA60&printsec=frontcover
[30] D. Al Mahkya, A. Djuraidah, A. H. Wigena, and B. Sartono, “Stacking Ensemble Approach In Statistical Downscaling Using CMIP6-DCP for Rainfall Estimation in Riau,” Media Statistika, vol. 17, no. 1, pp. 1–12, Sep. 2024, doi: 10.14710/medstat.17.1.1-12.
[31] A. Ghasemieh, A. Lloyed, P. Bahrami, P. Vajar, and R. Kashef, “A novel machine learning model with Stacking Ensemble Learner for predicting emergency readmission of heart-disease patients,” Decision Analytics Journal, vol. 7, Jun. 2023, doi: 10.1016/j.dajour.2023.100242.
[32] A. Hardoni, “Integrasi SMOTE pada Naive Bayes dan Logistic Regression Berbasis Particle Swarm Optimization untuk Prediksi Cacat Perangkat Lunak,” Jurnal Sistem dan Teknologi Informasi (Justin), vol. 9, no. 2, p. 144, Apr. 2021, doi: 10.26418/justin.v9i2.43173.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Detin Sofia, Pina Sekarpuji

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.