IDENTIFIKASI PENYAKIT TANAMAN BERDASARKAN CITRA DAUN BERBASIS WEB DENGAN PENDEKATAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK

Authors

  • Sri Mulyana Universitas Negeri Medan
  • Mansur AS Universitas Negeri Medan
  • Angga Warjaya Universitas Negeri Medan
  • Inna Muthmainnah Universitas Negeri Medan
  • Said Iskandar Al Idrus Universitas Negeri Medan
  • Zulfahmi Indra Universitas Negeri Medan

DOI:

https://doi.org/10.36080/skanika.v8i2.3573

Keywords:

CNN, digital image processing, mustard leaves, plant disease, website

Abstract

This research aims to develop a mustard plant disease classification system using the Convolutional Neural Network (CNN) method integrated into a web-based platform. Classification is carried out on three classes, namely Spotted Mustard Leaves, Rotten Mustard Leaves, Healthy Mustard Leaves, with the addition of the Not Mustard Leaf class as a distractor class to test the robustness of the model against images that are not included in the main classification category. The dataset used consists of 800 images, 200 images each per class. The CNN model was built with a sequential architecture consisting of several convolutions, pooling, dropout, and dense layers, and using ReLU and SoftMax activation functions in the output layer. The training process is carried out up to 100 epochs, but with the use of Early Stopping callback, the training stops at the 60th epoch, with the best performance (best epoch) achieved at the 32nd epoch. Evaluation of the model on test data showed an accuracy of 93.75%, with high precision, recall, and F1-score values in each class. The model was then implemented into a web interface so that users could upload leaf images and obtain classification results automatically. The results of this study show that CNN is effective in detecting mustard leaf disease and has the potential to be applied as a digital image-based diagnostic tool in agriculture.

Downloads

Download data is not yet available.

References

[1] M. Sari, “Tantangan Global dalam Pertanian: Pangan, Iklim, dan Keamanan Pangan,” Mertani. Accessed: Nov. 15, 2024. [Online]. Available: https://www.mertani.co.id/id/post/tantangan-global-dalam-pertanian-pangan-iklim-dan-keamanan-pangan

[2] M. R. Alamadani and D. Indriyana, “Klasifikasi Kesehatan Tanaman Padi Menggunakan Algoritma Convolutional Neural Network,” J. Mhs. Tek. Inform., vol. 8, no. 5, pp. 10177–10182, 2024, doi: https://doi.org/10.36040/jati.v8i5.10844.

[3] Y. P. Efendy, H. Suhardjono, and W. Widiwurjani, “Pertumbuhan dan Produksi Tanaman Sawi Pakcoy (Brassica rapa L.) Akibat Dibudidayakan pada Berbagai Komposisi Media Tanam dan Konsentrasi Pupuk Organik Cair dengan Sistem Vertikultur,” J. Agrotropika, vol. 23, no. 1, pp. 69-79, 2024, doi: https://doi.org/10.23960/ja.v23i1.8226.

[4] R. Krisnawan, “Pertumbuhan dan Hasil Tanaman Sawi Hijau (Brasica juncea L.) Dengan Lantunan Murottal Al-Qur’an dan Pupuk NPK 16:16:16,” Jurnal Ilmiah Mahasiswa Pertanian, vol. 2, no. 1, pp. 1–15, 2022.

[5] B. P. Statistik, “Produksi Tanaman Sayuran, 2021-2023,” Jakarta, 2023. [Online]. Available: https://www.bps.go.id/id/statistics-table/2/NjEjMg==/production-of-vegetables.html

[6] S. Hanifah, N. Apriliani, E. T. Sucianto, and E. S. Purwati, “Identifikasi Jamur Penyebab Penyakit pada Tanaman Sawi Putih ( Brassica rapa L .) dan Persentase Penyakitnya di Desa Serang Kecamatan Karangreja, Kabupaten Purbalingga,” Bio Eksakta J. Ilm. Biol. Unsoed, vol. 2, no. 2020, pp. 487–501, 2020, https://doi.org/10.20884/1.bioe.2020.2.3.3394.

[7] C. R. Rahman et al., “Identification and recognition of rice diseases and pests using convolutional neural networks,” Biosyst. Eng., vol. 194, pp. 112–120, 2020, doi: https://doi.org/10.1016/j.biosystemseng.2020.03.020.

[8] I. Fathurrahman, et al., “Pengembangan Model Convolutional Neural Network (CNN) untuk Klasifikasi Penyakit Kulit Berbasis Citra Digital,” Infotek J. Inform. dan Teknol., vol. 8, no. 1, pp. 298–308, 2025, doi: https://doi.org/10.1016/j.biosystemseng.2020.03.020.

[9] Q. S. A. Wasilah, M. Martanto, A. R. Dikananda, and D. Rohman, “Implementasi Cnn Resnet50 Untuk Mendeteksi Kualitas,” J. Mhs. Tek. Inform., vol. 9, no. 3, pp. 3675–3682, 2025, doi: https://doi.org/10.36040/jati.v9i3.13349.

[10] I. N. Suandana and W. Apriandari, “Pemanfaatan CNN (Convolutional Neural Network) dan Mobile V2 dalam Klasifikasi Rempah-Rempah Lokal Di Indonesia,” J. Mhs. Tek. Inform., vol. 8, no. 5, 2024, doi: https://doi.org/10.36040/jati.v8i5.10873.

[11] P. N. Candra and A. Prapanca, “Klasifikasi Gambar Asli dan Manipulasi Menggunakan Error Level Analysis (ELA) Sebagai Proses Komputasi Metode Convolutional Neural Network (CNN),” J. Informatics Comput. Sci., vol. 2, no. 01, pp. 9–18, 2020, doi: https://doi.org/10.26740/jinacs.v2n01.p9-18.

[12] M. Muslih and E. H. Rachmawanto, “Convolutional Neural Network (Cnn) Untuk Klasifikasi Citra Penyakit Diabetes Retinopathy,” Skanika, vol. 5, no. 2, pp. 167–176, 2022, doi: https://doi.org/10.36080/skanika.v5i2.2945.

[13] S. Wahyuni and M. Sulaeman, “Penerapan Algoritma Deep Learning Untuk Sistem Absensi Kehadiran Deteksi Wajah Di PT Karya Komponen Presisi,” J. Inform. SIMANTIK, vol. 7, no. 1, pp. 5–6, 2022, [Online]. Available: https://simantik.panca-sakti.ac.id/index.php/simantik/article/view/127

[14] N. F. Arminda, N. Sulistiyowati, and T. Nur Padilah, “Implementasi Algoritma Multinomial Naive Bayes Pada Analisis Sentimen Terhadap Ulasan Pengguna Aplikasi Brimo,” JATI: Jurnal Mhs. Tek. Inform., vol. 7, no. 3, pp. 1817–1822, 2023, doi: https://doi.org/10.36040/jati.v7i3.7012.

[15] R. Merdiansah, S. Siska, and A. A. Ridha, “Analisis Sentimen Pengguna X Indonesia Terkait Kendaraan Listrik Menggunakan IndoBERT,” J. Ilmu Komput. dan Sist. Inf., vol. 7, no. 1, pp. 221–228, 2024, doi: https://doi.org/10.55338/jikomsi.v7i1.2895.

[16] A. Hidayat et al., “Metode Convolutional Neural Network ( CNN ) Untuk Klasifikasi Tingkat Kesehatan Tanaman Lidah Buaya Berbasis Web,” J. Tek. Inform. dan Sist. Inf., vol. 11, no. 4, pp. 392–406, 2024.

Downloads

Published

2025-07-31

How to Cite

[1]
Sri Mulyana, Mansur AS, Angga Warjaya, Inna Muthmainnah, Said Iskandar Al Idrus, and Zulfahmi Indra, “IDENTIFIKASI PENYAKIT TANAMAN BERDASARKAN CITRA DAUN BERBASIS WEB DENGAN PENDEKATAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK”, SKANIKA, vol. 8, no. 2, pp. 305–317, Jul. 2025.