IMPLEMENTASI ARSITEKTUR RECURRENT NEURAL NETWORK PADA ANALISIS SENTIMEN CLASH OF CHAMPIONS

Authors

  • Arif Hidayat Universitas Mulawarman
  • Anindita Septiarini Universitas Mulawarman
  • Medi Taruk Universitas Mulawarman

DOI:

https://doi.org/10.36080/skanika.v8i2.3586

Keywords:

sentiment analysis, clash of champions, Vanilla RNN, LSTM, GRU

Abstract

Clash of Champions is an educational program by Ruangguru on YouTube that has received mixed responses. This study aims to perform sentiment analysis using three Recurrent Neural Network (RNN) architectures: Vanilla Recurrent Neural Network (Vanilla RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). The data consists of 2,100 training samples, 300 validation samples, and 600 testing samples collected from YouTube and enriched with data augmentation using GPT-4 technology. Additionally, 35 comments from a survey conducted via Google Form are used for generalization testing. Comments are classified into three sentiments: Pro, Neutral, and Contra. The analysis involves preprocessing, model training, and evaluation using standard metrics. GRU demonstrated the best performance with an accuracy of 99.2% and the highest F1 score. LSTM achieved an accuracy of 99.0% and a recall of 100% for the Pro class, while Vanilla RNN was less stable. On real-world data, GRU correctly predicted 16 comments, outperforming LSTM with 14 correct predictions and RNN with 13 correct predictions. GRU excels in accuracy, stability, and adaptability to the data.

Downloads

Download data is not yet available.

References

[1] E. Suncaka, “Meninjau Permasalahan Rendahnya Kualitas Pendidikan Di Indonesia,” UNISAN JURNAL: Jurnal Manajemen dan Pendidikan, vol. 2, no. 3, pp. 36–49, 2023, [Online]. Available: https://journal.an-nur.ac.id/index.php/unisanjournal/article/view/1234

[2] S. Ledia, B. Mauli, and R. Bustam, “Implementasi Kurikulum Merdeka Dalam Meningkatkan Mutu Pendidikan,” Reslaj: Religion Education Social Laa Roiba Journal, vol. 6, no. 1, pp. 790–806, 2024, doi: 10.47476/reslaj.v6i1.2708.

[3] M. Cholilah, A. G. P. Tatuwo, S. P. Rosdiana, and A. N. Fatirul, “Pengembangan Kurikulum Merdeka Dalam Satuan Pendidikan Serta Implementasi Kurikulum Merdeka Pada Pembelajaran Abad 21,” Sanskara Pendidikan dan Pengajaran, vol. 01, no. 02, pp. 57–66, 2023, doi: 10.58812/spp.v1.i02.

[4] B. Wiraning, “Ramai Clash of Champions Ruangguru, Begini Caranya Senang-senang Belajar Lewat Game,” https://indiekraf.com/ramai-clash-of-champions-ruangguru-begini-caranya-senang-senang-belajar-lewat-game/.

[5] P. G. Primasari, “Orang Indonesia Nggak Cocok Dikasih Tayangan kayak Clash of Champions Ruangguru. Ilmunya Dikit, Dramanya Selangit,” https://mojok.co/terminal/orang-indonesia-nggak-cocok-dikasih-tayangan-kayak-clash-of-champions-ruangguru/.

[6] S. Farisi and S. Hadi, “Analisis Sentimen menggunakan Recurrent Neural Network Terkait Isu Anies Baswedan Sebagai Calon Presiden 2024,” 2023.

[7] I. Pakpahan and J. Pardede, “Analisis Sentimen Penanganan Covid-19 Menggunakan Metode Long Short-Term Memory Pada Media Sosial Twitter,” Jurnal Publikasi Teknik Informatika, vol. 2, no. 1, pp. 12-25, 2023, doi: http://dx.doi.org/10.55606/jupti.v1i1.767.

[8] F. Amaliah, I. Kadek, and D. Nuryana, “Perbandingan Akurasi Metode Lexicon Based Dan Naive Bayes Classifier Pada Analisis Sentimen Pendapat Masyarakat Terhadap Aplikasi Investasi Pada Media Twitter,” Journal of Informatics and Computer Science, vol. 3, no. 3, 2022, doi: https://doi.org/10.26740/jinacs.v3n03.p384-393.

[9] I. Wayan, D. Gafatia, and N. Hadinata, “Analisis Pro Kontra Vaksin Covid 19 Menggunakan Sentiment Analysis Sumber Media Sosial Twitter,” Jurnal Pengembangan Sistem Informasi & Informatika, vol. 2, no. 1, pp. 34-42, 2021, doi: https://doi.org/10.47747/jpsii.v2i1.544.

[10] A. M. Iddrisu, et al., “A sentiment analysis framework to classify instances of sarcastic sentiments within the aviation sector,” International Journal of Information Management Data Insights, vol. 3, no. 2, 2023, doi: 10.1016/j.jjimei.2023.100180.

[11] F. Wulandari, E. Haerani, M. Fikry, and E. Budianita, “Analisis sentimen larangan penggunaan obat sirup menggunakan algoritma naive bayes classifier,” Jurnal CoSciTech Computer Science and Information Technology, vol. 4, no. 1, pp. 88–96, 2023, doi: https://doi.org/10.37859/coscitech.v4i1.4781.

[12] A. H. Hasugian, M. Fakhriza, and D. Zukhoiriyah, “Analisis Sentimen Pada Review Pengguna E-Commerce Menggunakan Algoritma Naïve Bayes,” Jurnal Teknologi Sistem Informasi dan Sistem Komputer TGD, vol. 6, no. 1, pp. 98-107, 2023, doi: https://doi.org/10.53513/jsk.v6i1.7400.

[13] F. Alifiana, et al., “Analisis Sentimen Aplikasi Duolingo Menggunakan Algoritma Naïve Bayes dan Support Machine Learning,” Jurnal Device, vol. 13, no. 2, pp. 223–230, 2023, doi: https://doi.org/10.32699/device.v13i2.5905.

[14] A. Pratama and M. Rosyda, “Analisis Sentimen dalam Aplikasi X terhadap Pengungsi Rohingya dengan LSTM,” SKANIKA: Sistem Komputer dan Teknik Informatika, vol. 8, no. 1, pp. 95-105, 2025, https://doi.org/10.36080/skanika.v8i1.3329.

[15] F. N. Salsabilla and A. Witanti, “Analisis Sentimen Akhir Masa Jabatan Presiden Jokowi Pada Media Sosial X Menggunakan Naïve Bayes,” SKANIKA: Sistem Komputer dan Teknik Informatika, vol. 8, no. 1, pp. 106–115, 2025, doi: https://doi.org/10.36080/skanika.v8i1.3331.

[16] N. Khoirunnisaa, et al., “Klasifikasi Teks Ulasan Aplikasi Netflix Pada Google Play Store Menggunakan Algoritma Naive Bayes dan SVM,” vol. 7, no. 1, pp. 64–73, 2024, https://doi.org/10.36080/skanika.v7i1.3138.

[17] A. S. Berliana and M. Mustikasari, “Analisis Sentimen Pada Ulasan Aplikasi Jakartanotebook Di Google Play Menggunakan Metode Recurrent Neural Network RNN,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 3, 2024, doi: 10.23960/jitet.v12i3.5067.

[18] R. Cahuantzi, X. Chen, and S. Güttel, “A comparison of LSTM and GRU networks for learning symbolic sequences,” ArXiv, Jan. 2023, doi: https://doi.org/10.1007/978-3-031-37963-5_53.

[19] R. Saidi, F. Jarray, and M. Alsuhaibani, “Comparative Analysis of Recurrent Neural Network Architectures for Arabic Word Sense Disambiguation,” in International Conference on Web Information Systems and Technologies, WEBIST - Proceedings, Science and Technology Publications, Lda, 2022, pp. 272–277. doi: 10.5220/0011527600003318.

[20] D. Lanasemba, “Implementasi Long-short Term Memory LSTM Untuk Generasi Feedback Berbahasa Indonesia Pada Sistem Penilaian Esai,” Jurnal Fasilkom, vol. 14, no. 1, pp. 101–113, 2024, doi: https://doi.org/10.37859/jf.v14i1.6906.

[21] C. A. Maharani, B. Warsito, and R. Santoso, “Analisis Sentimen Vaksin Covid-19 Pada Twitter Menggunakan Recurrent Neural Network Rnn Dengan Algoritma Long Short-term Memory LSTM,” Jurnal Gaussian, vol. 12, no. 3, pp. 403–413, 2024, doi: https://doi.org/10.14710/j.gauss.12.3.403-413.

[22] Suyanto, K. N. Ramadhani, and S. Mandala, Deep Learning Modernisasi Machine Learning Untuk Big Data, Bandung: Informatika Bandung, 2019.

Downloads

Published

2025-07-31

How to Cite

[1]
Arif Hidayat, Anindita Septiarini, and Medi Taruk, “IMPLEMENTASI ARSITEKTUR RECURRENT NEURAL NETWORK PADA ANALISIS SENTIMEN CLASH OF CHAMPIONS”, SKANIKA, vol. 8, no. 2, pp. 352–363, Jul. 2025.