IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK PERAMALAN PENJUALAN PADA PT. CENTRAL PACIFIC DEVELOPMENT

Authors

  • Indra Hertanto Universitas Budi Luhur
  • Riskiana Wulan Universitas Budi Luhur
  • Lutfi Rizaldi Mahida Universitas Budi Luhur
  • Dzaky Rakha Meilano
  • Prayoga Ajitya Setiawan Universitas Budi Luhur
  • Indra Indra Universitas Budi Luhur

DOI:

https://doi.org/10.36080/skanika.v8i2.3589

Keywords:

artificial neural network, backpropagation, MSE, sales prediction

Abstract

Central Pacific Development possesses an abundance of sales transaction data, yet currently lacks a system to optimally leverage this data for strategic planning. This research aims to implement an Artificial Neural Network (ANN) using the Backpropagation method to predict product sales, based on historical data from January 2022 to November 2024. The system involves stages such as data normalization, splitting the dataset into training and testing sets, and evaluating model performance using Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE) metrics. A Multi-Layer Perceptron (MLP) model with a 12-15-1 configuration yielded the best results, achieving a training MSE of 0.000999, a testing MSE of 0.062680, a MAPE of 22.24%, and an accuracy of 77.75%. The developed system can assist the company in designing data-driven production and marketing strategies, while also opening opportunities for further development through the integration of big data technologies or hybrid methods to improve prediction accuracy.

Downloads

Download data is not yet available.

References

[1] Sumiyati and Yatimatun Nafi’ah, Akuntansi Keuangan SMK/MAK Kelas XI. Gramedia Widisarana Indonesia, 2021.

[2] E. Ofori-Ntow Jnr and Y. Y. Ziggah, “Electricity demand forecasting based on feature extraction and optimized backpropagation neural network,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 6, pp. 1-13, 2023, doi: https://doi.org/10.1016/j.prime.2023.100293.

[3] R. T. Untari and M. Devegi, “Penerapan Algoritma Backpropagation untuk Memprediksi Jumlah Permintaan Buku dan Alat Tulis,” JURTEII: Jurnal Teknologi Informasi, vol. 2, no. 1, pp. 1-7, 2022, doi: https://doi.org/10.22202/jurteii.2022.6670.

[4] M. Marjiyono, B. Soedijono, and E. T. Luthfi, “Penggunaan Jaringan Syaraf Tiruan Untuk Meramalkan Permintaan pada Perusahaan Retail,” Seminar Nasional Teknologi Informasi dan Multimedia, vol. 6, no. 1, pp. 8-12, 2020, [Online] Available: https://ojs.amikom.ac.id/index.php/semnasteknomedia/article/view/1999/1808.

[5] S. Alzughaibi and S. El Khediri, “A Cloud Intrusion Detection Systems Based on DNN Using Backpropagation and PSO on the CSE-CIC-IDS2018 Dataset,” Applied Sciences (Switzerland), vol. 13, no. 4, 2023, pp.1-21, doi: http://dx.doi.org/10.3390/app13042276.

[6] B. Salsabila and I. Cholissodin, “Prediksi Permintaan Keripik Buah dengan Metode Jaringan Syaraf Tiruan Backpropagation (Studi Kasus: CV. Arjuna 999),” J-PTIIK, vol. 4, no. 6, pp. 1667–1674, 2020, [Online] Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/7335.

[7] M. F. Mubarokh, M. Nasir, and D. Komalasari, “Jaringan Syaraf Tiruan Untuk Memprediksi Penjualan Pakaian Menggunakan Algoritma Backpropagation,” Journal of Computer and Information Systems Ampera, vol. 1, no. 1, pp. 29-43, 2020, doi: http://dx.doi.org/10.51519/journalcisa.v1i1.3.

[8] K. Jaya Atmaja et al., “Implementation of Artificial Neural Network on Sales Forecasting Application,” Journal of Intelligent Decision Support System (IDSS), vol. 5, no. 4, pp. 124–131, 2022, doi: https://doi.org/10.35335/idss.v5i4.

[9] E. P. Madani, M. T. Furqon, and N. Hidayat, “Peramalan Indeks Harga Konsumen Indonesia menggunakan Metode Jaringan Saraf Tiruan Backpropagation,” J-PTIIK, vol. 4, no. 9, pp. 2801–2809, 2020, [Online] Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/7743.

[10] Asli Akilli and Hulya Atil, “Evaluation of Normalization Techniques on Neural Networks for the Prediction of 305-Day Milk Yield,” Turkish Journal of Agricultural Engineering Research, vol. 1, no. 2, pp. 354–367, 2020, doi: 10.46592/turkager.2020.v01i02.011.

[11] A. P. Wibawa, et al., “Multilayer Perceptron untuk Prediksi Sessions pada Sebuah Website Journal Elektronik,” Indonesian Journal of Data and Science, vol. 1, no. 3, pp. 57-67, 2020, doi: https://doi.org/10.33096/ijodas.v1i3.15.

[12] S. J. Russell and P. Norvig, Artificial Intelligence - A Modern Approach, 3rd ed. Prentice Hall, 2010.

[13] P. D. Sari and F. Ahyaningsih, “Jaringan Saraf Tiruan Backpropagation untuk Prediksi Harga Bahan Pangan di Wilayah Kabupaten Deli Serdang,” Algoritma: Jurnal Matematika, Ilmu pengetahuan Alam, Kebumian dan Angkasa, vol. 2, no. 6, pp. 105–117, 2024, doi: https://doi.org/10.62383/algoritma.v2i6.287.

[14] I. Nabillah and I. Ranggadara, “Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut,” JOINS (Journal of Information System), vol. 5, no. 2, 2020, doi: https://doi.org/10.33633/joins.v5i2.3900.

[15] H. F. Mahfuzh, D. Widiyanto, N. Chamidah, and I. Komputer, “Pengaruh Algoritma Inisialisasi Nguyen-Widrow Terhadap Algoritma Backpropagation Dalam Prediksi Indeks Harga Konsumen (IHK),” Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya, vol. 1, pp. 707–720, 2020, [Online] Available: https://conference.upnvj.ac.id/index.php/senamika/article/view/632.

[16] G. I. Marthasari, S. A. Astiti, and Y. Azhar, “Prediksi Data Time-series menggunakan Jaringan Syaraf Tiruan Algoritma Backpropagation Pada Kasus Prediksi Permintaan Beras,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 6, no. 3, pp. 187-193, 2021, doi: 10.30591/jpit.v6i3.2627.

Downloads

Published

2025-07-31

How to Cite

[1]
Indra Hertanto, Riskiana Wulan, Lutfi Rizaldi Mahida, Dzaky Rakha Meilano, Prayoga Ajitya Setiawan, and Indra Indra, “IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION UNTUK PERAMALAN PENJUALAN PADA PT. CENTRAL PACIFIC DEVELOPMENT”, SKANIKA, vol. 8, no. 2, pp. 364–376, Jul. 2025.