ANALISIS SENTIMEN ULASAN PRODUK SPAREPART MOTOR DI E-COMMERCE MENGGUNAKAN METODE SUPPORT VECTOR MACHINE (SVM)
DOI:
https://doi.org/10.36080/skanika.v9i1.3608Keywords:
E-Commerce, Sentiment Analysis, Support Vector Machine, TokopediaAbstract
This study was motivated by the increasing use of e-commerce in Indonesia, which highlights the importance of analyzing customer reviews as a basis for evaluating product and service quality. This study aims to analyze the sentiment of reviews of Honda motorcycle spare parts at the Ducks Garage store on the Tokopedia platform using the Support Vector Machine (SVM) algorithm. The dataset used consists of 2.537 reviews obtained through web scraping techniques and processed through text preprocessing stages, including data cleaning, normalization, tokenization, stopword removal, and stemming. Sentiment labelling was carried out into three classes, namely positive, negative, and neutral, with lexicon-based and feature weighting using the Term Frequency–Inverse Document Frequency (TF-IDF) method. Data distribution imbalance was handled using the Synthetic Minority Over-Sampling Technique (SMOTE) method. The SVM model was tested using three types of kernels, namely Linear, Polynomial, and Radial Basis Function (RBF). The test results showed that the RBF kernel produced the best performance with an accuracy of 92.79%, followed by the Linear kernel at 89.89% and the Polynomial kernel at 72.57%. The conclusion of this study shows that the application of SVM with SMOTE data balancing is effective in classifying the sentiment of e-commerce product reviews and can be used to support data-driven business decisions based on customer data.
Downloads
References
[1] Rahel Lina Simanjuntak, Theresia Romauli Siagian, Vina Anggriani, and Arnita Arnita, “Analisis Sentimen Ulasan Pada Aplikasi E-Commerce Shopee Dengan Menggunakan Algoritma Naïve Bayes,” Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 3, no. 3, pp. 23–39, 2023, doi: 10.55606/teknik.v3i3.2411.
[2] R. Apriani and D. Gustian, “Analisis Sentimen Dengan Naïve Bayes Terhadap Komentar Aplikasi Tokopedia,” Jurnal Rekayasa Teknologi Nusa Putra, vol. 6, no. 1, pp. 54–62, 2019, doi: 10.52005/rekayasa.v6i1.86.
[3] T. K. Al Lutfani, R. Astuti, W. Prihartono, and R. Hamonangan, “Penerapan Naive Bayes Untuk Analisis Sentimen Pada Ulasan Pelanggan Di Lazada: Studi Kasus Toko Mawar Collection,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 13, no. 2, pp.997-1003, 2025, doi: 10.23960/jitet.v13i2.6391.
[4] A. Z. Praghakusma and N. Charibaldi, “Komparasi Fungsi Kernel Metode Support Vector Machine untuk Analisis Sentimen Instagram dan Twitter (Studi Kasus : Komisi Pemberantasan Korupsi),” JSTIE (Jurnal Sarjana Teknik Informatika) (E-Journal), vol. 9, no. 2, pp. 33-42, 2021, doi: 10.12928/jstie.v9i2.20181.
[5] S. P. Azzahra, Y. A. Apriyanto, and A. Wijaya, “Analisis Sentimen Ulasan Aplikasi Deepl Pada Google Play Dengan Metode Support Vector Machine (SVM),” vol. 4, no. 2, pp. 59–66, 2023.
[6] M. R. Al Hafizh, Aldi Daim Fauzan, Woro Isti Rayahu, Kiki Mustaqim, and Rahma Hanum, “Web Scraping Data Ulasan Pelanggan untuk Kemajuan Bisnis E-Commerce pada Official Store dan Non-Official Store dengan Pendekatan Natural Language Processing,” Data Sciences Indonesia (DSI), vol. 5, no. 1, pp. 1–9, 2025, doi: 10.47709/dsi.v5i1.5748.
[7] E. Reza, “Dataset-sentiment-analysis.” [Online]. Available: https://github.com/rezaega/Dataset-sentiment-analysis
[8] S. Setyabudi and E. Aryanny, “Analisis Sentimen Penilaian Pengguna Marketplace Lazada Dengan Metode Naïve Bayes dan Support Vector Machine,” vol. 10, no. 1, pp.422-433, 2025, 2025, doi: 10.35314/sww8cg21.
[9] M. Hamka, “Analisis Sentimen Pengguna E-Commerce dan Marketplace Menggunakan Support Vector Machine,” Jurnal Rekayasa Sistem Informasi dan Teknologi, vol 1, no. 4, pp. 273-282, 2024, doi: 10.59407/jrsit.v1i4.555.
[10] M. Syamsul Hadi, J. Akbar, and M. F. Zulkarnain, “Analisis Sentimen Wisata Air Terjun Di Kabupaten Lombok Tengah Menggunakan Metode Support Vector Machine (SVM),” SKANIKA: Sistem Komputer dan Teknik Informatika, vol. 8, no. 2, pp. 318–329, 2025, doi: 10.36080/skanika.v8i2.3578.
[11] M. Taboada, J. Brooke, and K. Voll, “Lexicon-Based Methods for Sentiment Analysis,” Computional Linguistics, vol. 37, no. 2, pp. 267–307, 2011, [Online]. Available: https://www.proquest.com/docview/896181231/C4F09CD9F4A6440APQ/13?accountid=13827
[12] R. Damanhuri and V. A. Husein, “Analisis Sentimen pada Ulasan Aplikasi Access by KAI Berbahasa Indonesia Menggunakan Word-Embedding dan Classical Machine Learning,” Jurnal Masyarakat Informatika, vol. 15, no. 2, pp. 97–106, 2024, doi: 10.14710/jmasif.15.2.62383.
[13] H. Harnelia, “Analisis Sentimen Review Skincare Skintific Dengan Algoritma Support Vector Machine (SVM),” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 2, 2024, doi: 10.23960/jitet.v12i2.4095.
[14] F. Nufairi, N. Pratiwi, and F. Herlando, “Analisis Sentimen Pada Ulasan Aplikasi Threads Di Google Play Store Menggunakan Algoritma Support Vector Machine,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 9, no. 1, pp. 339–348, 2024, doi: 10.29100/jipi.v9i1.4929.
[15] M. H. H. Aly, “Klasifikasi Diabetes Menggunakan Algoritma Support Vector Machine Radial Basis Function,” Jurnal Teknik Informatika dan Teknologi Informasi, vol. 4, no. 1, pp. 28–38, 2024, doi: 10.55606/jutiti.v4i1.3420.
[16] S. Rabbani, et al., “Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 3, no. 2, pp. 153–160, 2023, doi: 10.57152/malcom.v3i2.897.
[17] S. D. Parameswari, et al., “Studi Perbandingan Naïve Bayes dan Support Vector Machine (SVM) dalam Analisis Sentimen Pengguna Metaverse,” Jurnal Teknologi dan Manajemen Industri Terapan, vol. 4, no. 3, pp. 1059–1065, 2025, doi: 10.55826/jtmit.v4i3.1122.
[18] M. R. Pradana, W. Witanti, and A. Komarudin, “Prediksi Tingkat Keparahan Diabetes Melitus Menggunakan Support Vector Machine (SVM) dengan Kernel Polinomial dan RBF,” Jurnal Locus Penelitian dan Pengabdian, vol. 4, no. 8, pp. 7521–7533, 2025, doi: 10.58344/locus.v4i8.4357.
[19] M. RoisS, “Perbandingan Kinerja Support Vector Machine Dalam Klasifikasi Obesitas Dengan Pendekatan Kernel Linear Dan Radial Basis Function,” Jurnal Device, vol. 15, no. 1, pp. 14–23, 2025.
[20] P. Pelayanan, M. Algoritma, and N. Bayer, “Analisis Sentimen Ulasan Produk Toko Online Esrocte Untuk Peningkatan Pelayanan Menggunakan Algoritma Naive Bayes,” Blantika Multidisciplinary, vol. 2, no. 8, pp. 667-673, 2024, doi: https://doi.org/10.57096/blantika.v2i8.189
[21] N. Andrika, Analisis Sentimen Produk Fashion Lokal Pada Marketplace Dengan Klasifikasi Support Vector Machine (SVM). repository.uin-suska.ac.id, 2024. [Online]. Available: http://repository.uin-suska.ac.id/81625/
[22] N. Andrika, “Analisis Sentimen Produk Fashion Lokal Pada Marketplace Dengan Klasifikasi Support Vector Machine (SVM),” Jul. 2024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Reza Ega Resnanda, Dwi Cahyono, Anik Vega Vitianingsih

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
CC BY-SA 4.0
Creative Commons Attribution-ShareAlike 4.0 International
This license requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, even for commercial purposes. If others remix, adapt, or build upon the material, they must license the modified material under identical terms.
BY: Credit must be given to you, the creator.
SA: Adaptations must be shared under the same terms.ng








