ANALISIS SENTIMEN TERHADAP KOMENTAR PADA VIDEO VIRAL (FYP) TIKTOK MENGGUNAKAN METODE NAÏVE BAYES
Indonesia
DOI:
https://doi.org/10.36080/skanika.v9i1.3628Keywords:
for your page, sentiment analysis, naive bayes, tiktok, viralAbstract
Sentiment analysis, or opinion mining, is a method used to identify public opinions expressed in textual form on social media platforms. This approach is useful for understanding public responses to a particular phenomenon without the need for conventional survey methods. This study focuses on sentiment analysis of user comments on viral TikTok videos categorized under the For You Page (FYP). The dataset was obtained through a comment crawling process, resulting in 12,494 comments, which were then processed through preprocessing stages including case folding, text normalization, stopword removal, and stemming. Sentiment classification was performed using the Naïve Bayes method with Term Frequency–Inverse Document Frequency (TF-IDF) weighting and two sentiment classes, namely positive and negative. The data were split using an 80% training and 20% testing scheme. Experimental results show that the proposed method achieved a best accuracy of 90%, demonstrating that the combination of comprehensive preprocessing and TF-IDF weighting effectively improves the performance of sentiment classification on comments from TikTok FYP videos.
Downloads
References
[1] T. A. Berutu, D. Lorena, R. Sigalingging, and G. Kasih, “Pengaruh Teknologi Digital terhadap Perkembangan Bisnis Modern,” Neptunus J. Ilmu Komput. Dan Teknol. Inf., vol. 2, no. 3, pp. 358–370, 2024, doi: 10.61132/neptunus.v2i3.258.
[2] S. Mayolaika, V. V. Effendy, C. Delvin, and M. A. Hanif, “Pengaruh Kebebasan Berpendapat Di Sosial Media Terhadap Perubahan Etika Dan Norma Remaja Indonesia,” J. Kewarganegaraan, vol. 5, no. 2, pp. 826–836, 2021, doi: 10.31316/jk.v5i2.2083.
[3] A. Mubarak, “Rancang Bangun Aplikasi Web Sekolah Menggunakan UML (Unified Modeling Language) dan Bahasa Pemrograman PHP (Php Hypertext Preprocessor) Berorientasi Objek," JIKO (Jurnal Inform. dan Komputer), vol. 2, no. 1, pp. 19–25, 2019, doi: 10.33387/jiko.v2i1.1052.
[4] A. Rama, W. Simatupang, D. Irfan, and M. Mushkhir, “Konsep media sosial dalam pendidikan sekolah menengahkejuruan (SMK),” JRTI (Jurnal Ris. Tindakan Indones., vol. 7, no. 4, pp. 72–729, 2022, doi: 10.29210/30032530000.
[5] F. I. R. Dewi, R. D. Sakuntalawati, and B. Mulyawan, “Pencegahan Cyberbullying Berbasis Pemanfaatan Online Resilience dan Karakter Remaja,” Deepublish, pp. 809–820, 2023.
[6] F. A. P. Sangadji, et al., “The Role of Social Media As a Platform for E-Commerce,” Vaasan Amm. Univ. Appl. Sci., vol. 4, no. 1, pp. 1–7, 2024.
[7] R. C. Rivaldi and T. D. Wismarini, “Sentiment Analysis on Product Reviews with Natural Language Processing (NLP) Method (Case Study Zalika Store 88 Shopee),” J. Ilm. Elektron. dan Komput., vol. 17, no. 1, pp. 120–128, 2024, doi: 10.51903/elkom.v17i1.1680.
[8] N. Azise, and A. Gunawan, and A. Baijuri, “ Implementasi Algortima Naïve Bayes untuk Klasifikasi Penerima Bantuan Langsung Tunai,” COREAI: Jurnal Kecerdasan Buatan, Komputasi dan Teknologi Informasi, vol. 6, no. 2, pp. 158–168, 2025, doi: 10.33650/coreai.v6i2.13189.
[9] R. L. Pratiwi, Z. I. Alfianti, A. Fauzi, and G. Ginabila, “Penerapan Algoritma Naive Bayes dan SVM untuk Analisis Sentimen terhadap Penggunaan True Wireless Stereo (TWS),” SKANIKA Sist. Komput. dan Tek. Inform., vol. 8, no. 2, pp. 257–268, 2025, doi: 10.36080/skanika.v8i2.3535.
[10] M. A. M. Setiawan, K. Kusrini, and A. D. Hartono, “Menggunakan Metode Machine Learning Untuk Memprediksi Nilai Mahasiswa Dengan Model Prediksi Multiclass,” J. Inform. J. Pengemb. IT, vol. 10, no. 1, pp. 190–204, 2025, doi: 10.30591/jpit.v10i1.8334.
[11] R. H. Tinambunan, J. Titaley, and C. E. Mongi, “Klasifikasi Naive Bayes Dalam Memprediksi Tingkat Program Studi Matematika Fmipa Universitas Sam Ratulangi Manado,” Pros. Semin. Nas. Sains Dan Terap. Vi, no. April, pp. 141–149, 2022.
[12] M. S. Hadi, J. Akbar, and M. F. Zulkarnain, “Analisis Sentimen Wisata Air Terjun Di Kabupaten Lombok Tengah Menggunakan Metode Support Vector Machine (Svm),” SKANIKA Sist. Komput. dan Tek. Inform., vol. 8, no. 2, pp. 318–329, 2025, doi: 10.36080/skanika.v8i2.3578.
[13] A. A. Permana et al., Machine Learning, Padang: Pt. Global Eksekutif Teknologi, 2023. [Online] Available: https://repository.bsi.ac.id/repo/files/364253/download/Buku---Machine-Learning.pdf
[14] D. Y. Utami, E. Nurlelah, and F. Nur Hasan, “Comparison of Neural Network Algorithms, Naive Bayes and Logistic Regression To Find The Highest Accuracy In Diabetes,” JITE (Journal Informatics Telecommun. Eng., vol. 5, no. 1, pp. 53–64, 2021, doi: 10.31289/jite.v5i1.5201
[15] K. M. Sujon, R. Hassan, K. Choi, and Md. A. Samad, "Accuracy, precision, recall, f1-score, or MCC? Empirical evidence from advanced statistics, ML, and XAI for evaluating business predictive models," Journal of Big Data, vol. 12, no. 1, pp. 1-5, 2025, doi: 10.1186/s40537-025-01313-4.
[16] R. Ramadhani, S. Z. Harahap., S. Suryadi., and Masrizal., “Analisis Kepuasan Masyarakat Terhadap Kinerja Bupati Labuhanbatu Selatan Periode 2021-2024 Menggunakan Metode Decision Tree dan Naive Bayes,” Journal of Computer Science and Information (JCoInS), vol. 6, no. 3, pp. 322–334, 2025.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Putra Weka Pratama, Endang Wahyu Pamungkas

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
CC BY-SA 4.0
Creative Commons Attribution-ShareAlike 4.0 International
This license requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, even for commercial purposes. If others remix, adapt, or build upon the material, they must license the modified material under identical terms.
BY: Credit must be given to you, the creator.
SA: Adaptations must be shared under the same terms.ng








