SIG DENGAN K-MEANS++ UNTUK KLASTERISASI PENGEMBANGAN UMKM KAIN TENUN (STUDI KASUS: KABUPATEN NAGEKEO)

Authors

  • Maria Yasinta Wulang Institut Teknologi Nasional, Malang
  • Suryo Adi Wibowo Fakultas Teknologi Industri, Institut Teknologi Nasional Malang
  • Eko Heri Susanto Fakultas Teknologi Industri, Institut Teknologi Nasional Malang

DOI:

https://doi.org/10.36080/skanika.v9i1.3630

Keywords:

Geographic Information System, K-Means++, MSMEs, Woven Fabric

Abstract

The woven cloth Small and Medium Enterprises (SMEs) in Nagekeo Regency possess significant economic and cultural potential; however, the current coaching process is executed uniformly without data-driven analysis, resulting in inefficient allocation of aid. This study aims to map the distribution of woven cloth SMEs, develop a web-based Geographic Information System (GIS) application, and implement the K-Means++ method to cluster the SMEs based on their productivity levels. The system was designed using Laravel and Leaflet.js, incorporating features for data management, interactive maps, and visualization of productivity clusters, which include Medium Productivity (PM), Low Productivity (PR), and Dense/Massive Productivity (PP). The research findings indicate that the system's clustering process achieved 100% accuracy compared to manual calculation using Excel, with a 0% error rate. A lift ratio of 7.69 (>1) signifies a strong relationship between variables and validates the clustering results. The algorithm's computation time was recorded at 0.464 seconds. Black-box and browser compatibility tests confirmed that all features functioned as intended across Chrome, Edge, and Firefox. Furthermore, user testing involving 10 respondents yielded a positive assessment, with percentages of 43% Strongly Agree, 41% Agree, 14.5% Neutral, and 1.5% Disagree. This system is capable of supporting more effective and objective spatial data-driven decision-making

Downloads

Download data is not yet available.

References

[1] N. C. A. Wikarta and S. Defiyanti, “Pengelompokan UMKM Berdasarkan Kategori Usaha Dan Sebaran Wilayah Di Jawa Barat Dengan Clustering K-Means,” J. Inform. dan Tek. Elektro Terap., vol. 13, no. 3, pp. 494–504, 2025, doi: 10.23960/jitet.v13i3.6889.

[2] H. Hendrik and T. M. S. Mulyana, “Pemetaan Daerah Berdasarkan Jenis Usaha UMKM Dengan Algoritma K-Means Di Jawa Barat,” J. Teknol. Informasi, Komputer, dan Apl. (JTIKA ), vol. 5, no. 2, pp. 164–172, 2023, doi: 10.29303/jtika.v5i2.223.

[3] H. Kurniadewi, R. A. Hakim, M. Jajuli, and J. H. Jaman, “Pemetaan UMKM dalam Upaya Pengentasan Kemiskinan dan Penyerapan Tenaga Kerja Menggunakan Algoritma K-Means,” J. Appl. Informatics Comput., vol. 6, no. 2, pp. 113–119, 2022, doi: 10.30871/jaic.v6i2.4227.

[4] N. R. Saputra and G. Z. Muflih, “Pengelompokan Wilayah Indonesia Berdasarkan Komponen Indeks Pembangunan Manusia Dengan Pendekatan Algoritma K-Means Clustering,” SKANIKA Sist. Komput. dan Tek. Inform., vol. 8, no. 1, pp. 156–167, 2025, doi: 10.36080/skanika.v8i1.3318.

[5] N. Hendrastuty, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa,” J. Ilm. Inform. dan Ilmu Komput., vol. 3, no. 1, pp. 46–56, 2024, doi: 10.58602/jima-ilkom.v3i1.26.

[6] L. N. Wakhidah, A. K. Zyen, and B. B. Wahono, “Evaluation of Telecommunication Customer Churn Classification with SMOTE Using Random Forest and XGBoost Algorithms,” J. Appl. Informatics Comput., vol. 9, no. 1, pp. 89–95, 2025, doi: 10.30871/jaic.v9i1.8740.

[7] N. Nugroho and F. D. Adhinata, “Penggunaan Metode K-Means dan K-Means++ Sebagai Clustering Data Covid-19 di Pulau Jawa,” Teknika, vol. 11, no. 3, pp. 170–179, 2022, doi: 10.34148/teknika.v11i3.502.

[8] E. N. Anugrah and A. S. Karim, “Sistem Informasi Geografis UMKM Berbasis Website (Study Kasus Dinas Pariwisata Lampung Tengah),” IJCCS, vol. 16, no. 2, pp. 1–5, 2022, [Online]. Available: https://jurnal.polsri.ac.id/index.php/teknika/article/view/6364

[9] M. Muthmainnah, J. Akbar, and V. Ilhadi, “Aplikasi Sistem Informasi Geografis (SIG) Berbasis Web Untuk Pemetaan Persebaran Usaha Mikro Kecil Menengah (UMKM) Di Kota Lhokseumawe,” Sisfo: Jurnal Ilmiah Sistem Informasi, vol. 7, no. 2, pp. 1-9, 2023, doi: 10.29103/sisfo.v7i2.13917.

[10] S. Aprudi and M. Murahman, “Sistem Informasi Geografis Pemetaan Umkm Di Kota Lubuklinggau Berbasis Web,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 5, no. 2, pp. 180–185, 2022, doi: 10.31539/intecoms.v5i2.4888.

[11] F. Firmansyah et al., “Pemetaan UMKM Pasca Pandemi Covid-19 Berbasis Sistem Informasi Geografis (SIG) di Kecamatan Singosari, Kabupaten Malang, Provinsi Jawa Timur,” Sewagati, vol. 8, no. 3, pp. 1521–1536, 2024, doi: 10.12962/j26139960.v8i3.517.

[12] A. Santoso, Ivan Permana, Edwin Zusrony, and Maya Utami Dewi, “Implementasi Aplikasi digitalisasi Produk UMKM dengan E-Katalog dan GIS secara terpadu untuk Pemetaan dan optimasi penjualan,” Elkom J. Elektron. dan Komput., vol. 15, no. 2, pp. 383–392, 2022, doi: 10.51903/elkom.v15i2.841.

[13] M. Qadisyah, “Peran UMKM Dalam Pembangunan Dan Kesejahteraan Masyarakat Kabupaten Blora,” Manifest J. Manajemen, Ekon. Kewirausahaan dan Investasi, vol. 1, no. 2, pp. 159–168, 2023, doi: 10.37832/manifest.v1i2.58.

[14] M. R. Kusnaidi, T. Gulo, and S. Aripin, “Penerapan Normalisasi Data Dalam Mengelompokkan Data Mahasiswa Dengan Menggunakan Metode K-Means Untuk Menentukan Prioritas Bantuan Uang Kuliah Tunggal,” J. Comput. Syst. Informatics, vol. 3, no. 4, pp. 330–338, 2022, doi: 10.47065/josyc.v3i4.2112.

[15] H. Li and J. Wang, “Collaborative annealing power k-means++ clustering,” Knowledge-Based Syst., vol. 255, p. 109593, 2022, doi: 10.1016/j.knosys.2022.109593.

Downloads

Published

2026-01-31

How to Cite

[1]
M. Y. Wulang, S. A. Wibowo, and E. H. Susanto, “SIG DENGAN K-MEANS++ UNTUK KLASTERISASI PENGEMBANGAN UMKM KAIN TENUN (STUDI KASUS: KABUPATEN NAGEKEO) ”, SKANIKA, vol. 9, no. 1, pp. 47–60, Jan. 2026.