PENERAPAN METODE K-MEANS ++ UNTUK PENGELOMPOKAN WILAYAH RAWAN KEKERASAN ANAK DAN PEREMPUAN DI KABUPATEN NAGEKEO

Authors

  • Marshella Angela Merici Poa Institut Teknologi Nasional Malang
  • Ahmad Fahrudi Setiawan Institut Teknologi Nasional Malang
  • Joseph Dedy Irawan Institut Teknologi Nasional Malang

DOI:

https://doi.org/10.36080/skanika.v9i1.3633

Keywords:

Clustering, Davies-Bouldin Indeks (DBI), Silhouette Score, Violence against Children and Women

Abstract

Violence against women and children in Nagekeo Regency is a crucial social issue requiring targeted intervention. The Department of PMD-P3A faces challenges in analyzing regional vulnerability, which has historically been manual and subjective. This research aims to develop a web-based vulnerability grouping system implementing the K-Means++ Clustering method. This method was strategically selected for its ability to optimize initial centroid selection through distance probability calculations, resulting in more stable and accurate clustering compared to the standard K-Means algorithm. The system was developed using the Laravel framework and MySQL database, utilizing historical data from 2020 to 2025. The clustering process is based on two key parameters: Type of Violence and Place of Occurrence, mapping regions into three levels: Highly Vulnerable, Vulnerable, and Non-Vulnerable. The results demonstrate excellent system performance with a Silhouette Score of 0.6633 and a Davies-Bouldin Index (DBI) of 0.4520, indicating a solid and optimally separated cluster structure. Beyond statistical data, the system provides interactive digital mapping visualizations. This implementation is expected to serve as a decision-support tool for the local government in formulating more effective and efficient social protection policies in Nagekeo Regency.

Downloads

Download data is not yet available.

References

[1] R. Fauziah and A. I. Purnamasari, “Implementasi Algoritma K-Means pada Kasus Kekerasan Anak dan Perempuan Berdasarkan Usia,” Hello World J. Ilmu Komput., vol. 2, no. 1, pp. 34–41, 2023, doi: 10.56211/helloworld.v2i1.232.

[2] N. Adawiyah, N. Sulistiyowat, and O. Jajuli, “Klasterisasi Kasus Kekerasan Terhadap Anak dan Perempuan Berdasarkan Algoritma K-Means,” Gener. J., vol. 5, no. 2, pp. 69–80, 2021.

[3] Z. Hasan, A. Firly, A. P. Utami, and D. E. Sari, “Perlindungan Hukum Terhadap Perempuan Korban Kekerasan Dalam Rumah Tangga,” J. Hukum, Polit. Dan Ilmu Sos., vol. 2, no. 2, pp. 103–113, 2023, doi: 10.55606/jhpis.v2i2.1607.

[4] W. Agus Lestari, K. Paranita Kartika, and S. Nur Budiman, “Klasterisasi Siswa Berdasarkan Hasil Belajar Menggunakan K-Means Berbasis Web (Studi Kasus : Tk. Prima Insan Sholeh Talun),” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 1, pp. 9–16, 2021, doi: 10.36040/jati.v6i1.4261.

[5] A. N. Alifia, A. F. Setiawan, and D. Rudhistiar, “Penerapan Algoritma K-Means Clustering dalam Peringatan Dini Resiko Kegagalan Siswa Pada Mata Pelajaran Bahasa Indonesia,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1174–1181, 2024, doi: 10.36040/jati.v8i2.9075.

[6] R. Hidayat, F. Laksana, and Y. Dewi, “Pengelompokan Jumlah Kekerasan Terhadap Anak Menurut Kecamatan Di Kabupaten Banyumas Menggunakan Penerapan Algoritma K-Means Clustering,” Indexia, vol. 5, no. 02, pp. 123-135, 2023, doi: 10.30587/indexia.v5i02.6404.

[7] C. Diningrat, B. Priyatna, E. Novalia, and S. S. Hilabi, “Klasterisasi Kasus Kekerasan Berdasarkan Jenis Lokasi Kejadian di Jawa Barat Menggunakan Algoritma K-Means,” J. Minfo Polgan, vol. 14, no. 1, pp. 518–528, 2025, doi: 10.33395/jmp.v14i1.14760.

[8] N. M. Fithryani, et al., “Algoritma K-Means untuk Meningkatkan Segmentasi Pola Kekerasan,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 13, no. 1, pp. 997–1003, 2025, doi: 10.23960/jitet.v13i1.5795.

[9] M. Orisa, “Optimasi Cluster pada Algoritma K-Means,” Pros. SENIATI, vol. 6, no. 2, pp. 430–437, Jul. 2022, doi: 10.36040/seniati.v6i2.5034.

[10] U. F. Laili, C. Umatin, and M. U. Ridwanulloh, “Analisis Potensial Drop Out Mahasiswa Dengan K-Means ++ Clustering dalam Upaya Peningkatan Kualitan IAIN Kediri Infor Artikel Abstrak,” Paedagoria: Jurnal Kajian, Penelitian, dan Pengembangan Kependidikan, vol. 14, no. 2, pp. 145–153, 2023, doi: 10.31764/paedagoria.v14i2.14077.

[11] N. Nugroho and F. D. Adhinata, “Penggunaan Metode K-Means dan K-Means++ Sebagai Clustering Data Covid-19 di Pulau Jawa,” Teknika, vol. 11, no. 3, pp. 170–179, 2022, doi: 10.34148/teknika.v11i3.502.

[12] M. Ferdiansyah and U. Chotijah, “Implementasi Algoritme K-Means ++ Untuk Clustering Penjualan Bahan Bangunan,” J. Ilm. Tek. Inform. dan Komun., vol. 4, no. 1, pp. 181–193, 2024.

[13] C. Ramdani and N. Safadila, “Analisis Data Akademis dengan Menerapkan Algoritme K-Means dan K-Means++,” vol. 1, no. 4, pp. 155–160, 2022, doi: 10.20895/ledger.v1i4.918.

[14] Y. Hasan, “Pengukuran Silhouette Score Dan Davies-Bouldin Index Pada Hasil Cluster K-Means dan Dbscan,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3S1, 2024, doi: 10.23960/jitet.v12i3s1.5001.

[15] M. A. K. D. K-Medoids, “Penerapan Data Mining Dalam Pemilihan Produk Unggulan dengan Metode Algoritma K-Means dan K-Medoids,” Jurnal Media Informatika Budidarma, vol. 6, no. 1, pp. 27–34, 2022, doi: 10.30865/mib.v6i1.3294.

Downloads

Published

2026-01-31

How to Cite

[1]
M. A. M. Poa, A. F. Setiawan, and J. D. Irawan, “PENERAPAN METODE K-MEANS ++ UNTUK PENGELOMPOKAN WILAYAH RAWAN KEKERASAN ANAK DAN PEREMPUAN DI KABUPATEN NAGEKEO”, SKANIKA, vol. 9, no. 1, pp. 131–146, Jan. 2026.