PENERAPAN METODE K-MEANS ++ UNTUK PENGELOMPOKAN WILAYAH RAWAN KEKERASAN ANAK DAN PEREMPUAN DI KABUPATEN NAGEKEO
DOI:
https://doi.org/10.36080/skanika.v9i1.3633Keywords:
Clustering, Davies-Bouldin Indeks (DBI), Silhouette Score, Violence against Children and WomenAbstract
Violence against women and children in Nagekeo Regency is a crucial social issue requiring targeted intervention. The Department of PMD-P3A faces challenges in analyzing regional vulnerability, which has historically been manual and subjective. This research aims to develop a web-based vulnerability grouping system implementing the K-Means++ Clustering method. This method was strategically selected for its ability to optimize initial centroid selection through distance probability calculations, resulting in more stable and accurate clustering compared to the standard K-Means algorithm. The system was developed using the Laravel framework and MySQL database, utilizing historical data from 2020 to 2025. The clustering process is based on two key parameters: Type of Violence and Place of Occurrence, mapping regions into three levels: Highly Vulnerable, Vulnerable, and Non-Vulnerable. The results demonstrate excellent system performance with a Silhouette Score of 0.6633 and a Davies-Bouldin Index (DBI) of 0.4520, indicating a solid and optimally separated cluster structure. Beyond statistical data, the system provides interactive digital mapping visualizations. This implementation is expected to serve as a decision-support tool for the local government in formulating more effective and efficient social protection policies in Nagekeo Regency.
Downloads
References
[1] R. Fauziah and A. I. Purnamasari, “Implementasi Algoritma K-Means pada Kasus Kekerasan Anak dan Perempuan Berdasarkan Usia,” Hello World J. Ilmu Komput., vol. 2, no. 1, pp. 34–41, 2023, doi: 10.56211/helloworld.v2i1.232.
[2] N. Adawiyah, N. Sulistiyowat, and O. Jajuli, “Klasterisasi Kasus Kekerasan Terhadap Anak dan Perempuan Berdasarkan Algoritma K-Means,” Gener. J., vol. 5, no. 2, pp. 69–80, 2021.
[3] Z. Hasan, A. Firly, A. P. Utami, and D. E. Sari, “Perlindungan Hukum Terhadap Perempuan Korban Kekerasan Dalam Rumah Tangga,” J. Hukum, Polit. Dan Ilmu Sos., vol. 2, no. 2, pp. 103–113, 2023, doi: 10.55606/jhpis.v2i2.1607.
[4] W. Agus Lestari, K. Paranita Kartika, and S. Nur Budiman, “Klasterisasi Siswa Berdasarkan Hasil Belajar Menggunakan K-Means Berbasis Web (Studi Kasus : Tk. Prima Insan Sholeh Talun),” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 1, pp. 9–16, 2021, doi: 10.36040/jati.v6i1.4261.
[5] A. N. Alifia, A. F. Setiawan, and D. Rudhistiar, “Penerapan Algoritma K-Means Clustering dalam Peringatan Dini Resiko Kegagalan Siswa Pada Mata Pelajaran Bahasa Indonesia,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 1174–1181, 2024, doi: 10.36040/jati.v8i2.9075.
[6] R. Hidayat, F. Laksana, and Y. Dewi, “Pengelompokan Jumlah Kekerasan Terhadap Anak Menurut Kecamatan Di Kabupaten Banyumas Menggunakan Penerapan Algoritma K-Means Clustering,” Indexia, vol. 5, no. 02, pp. 123-135, 2023, doi: 10.30587/indexia.v5i02.6404.
[7] C. Diningrat, B. Priyatna, E. Novalia, and S. S. Hilabi, “Klasterisasi Kasus Kekerasan Berdasarkan Jenis Lokasi Kejadian di Jawa Barat Menggunakan Algoritma K-Means,” J. Minfo Polgan, vol. 14, no. 1, pp. 518–528, 2025, doi: 10.33395/jmp.v14i1.14760.
[8] N. M. Fithryani, et al., “Algoritma K-Means untuk Meningkatkan Segmentasi Pola Kekerasan,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 13, no. 1, pp. 997–1003, 2025, doi: 10.23960/jitet.v13i1.5795.
[9] M. Orisa, “Optimasi Cluster pada Algoritma K-Means,” Pros. SENIATI, vol. 6, no. 2, pp. 430–437, Jul. 2022, doi: 10.36040/seniati.v6i2.5034.
[10] U. F. Laili, C. Umatin, and M. U. Ridwanulloh, “Analisis Potensial Drop Out Mahasiswa Dengan K-Means ++ Clustering dalam Upaya Peningkatan Kualitan IAIN Kediri Infor Artikel Abstrak,” Paedagoria: Jurnal Kajian, Penelitian, dan Pengembangan Kependidikan, vol. 14, no. 2, pp. 145–153, 2023, doi: 10.31764/paedagoria.v14i2.14077.
[11] N. Nugroho and F. D. Adhinata, “Penggunaan Metode K-Means dan K-Means++ Sebagai Clustering Data Covid-19 di Pulau Jawa,” Teknika, vol. 11, no. 3, pp. 170–179, 2022, doi: 10.34148/teknika.v11i3.502.
[12] M. Ferdiansyah and U. Chotijah, “Implementasi Algoritme K-Means ++ Untuk Clustering Penjualan Bahan Bangunan,” J. Ilm. Tek. Inform. dan Komun., vol. 4, no. 1, pp. 181–193, 2024.
[13] C. Ramdani and N. Safadila, “Analisis Data Akademis dengan Menerapkan Algoritme K-Means dan K-Means++,” vol. 1, no. 4, pp. 155–160, 2022, doi: 10.20895/ledger.v1i4.918.
[14] Y. Hasan, “Pengukuran Silhouette Score Dan Davies-Bouldin Index Pada Hasil Cluster K-Means dan Dbscan,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3S1, 2024, doi: 10.23960/jitet.v12i3s1.5001.
[15] M. A. K. D. K-Medoids, “Penerapan Data Mining Dalam Pemilihan Produk Unggulan dengan Metode Algoritma K-Means dan K-Medoids,” Jurnal Media Informatika Budidarma, vol. 6, no. 1, pp. 27–34, 2022, doi: 10.30865/mib.v6i1.3294.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Marshella Angela Merici Poa, Ahmad Fahrudi Setiawan, Joseph Dedy Irawan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
CC BY-SA 4.0
Creative Commons Attribution-ShareAlike 4.0 International
This license requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, even for commercial purposes. If others remix, adapt, or build upon the material, they must license the modified material under identical terms.
BY: Credit must be given to you, the creator.
SA: Adaptations must be shared under the same terms.ng








