ANALISIS PENGARUH RANDOM SEARCH PADA LOGISTIC REGRESSION DAN SUPPORT VECTOR MACHINE DALAM KLASIFIKASI SENTIMEN APLIKASI PDAM INFO

Authors

  • Suci Awalia Ramadani Universitas Sulawesi Barat
  • Heliawaty Hamrul University of West Sulawesi
  • Nurhikma Arifin University of West Sulawesi

DOI:

https://doi.org/10.36080/skanika.v9i1.3646

Keywords:

logistic regression, PDAM Info, random search, sentiment analysis, support vector machine

Abstract

Digital transformation increases the demand for fast and responsive technology-based public services through mobile applications, including the PDAM Info application. User reviews provide important insights for improving service quality, but their large volume makes manual analysis inefficient, requiring text-based sentiment analysis using machine learning. Default machine learning parameters are often suboptimal; therefore, Random Search is applied to improve classification performance. This study analyzes user sentiment and examines the effect of Random Search on sentiment classification of the PDAM Info application. A total of 2,400 Google Play Store reviews were collected, resulting in 1,677 data after preprocessing, labeled using a lexicon-based approach, and represented using TF-IDF. Logistic Regression and Support Vector Machine were used for classification with Random Search for hyperparameter tuning. The results indicate that negative sentiment dominates user reviews, mainly related to service coverage and payment methods. Random Search improves classification performance, achieving 88% accuracy and 83% F1-score, particularly in predicting positive and neutral classes on imbalanced data. The contribution of this study provides insights into user perceptions for PDAM Info application developers and demonstrates that Random Search.

Downloads

Download data is not yet available.

References

[1] T. Tri Indriyani, “Bebas Ribet Bayar dan Urus Tagihan Air, Cukup Pakai PDAM Info!,” PDAM Info, 2024. [Online]. Tersedia: https://pdaminfo.pdampintar.id/blog/lainnya/bebas-ribet-bayar-dan-urus-tagihan-air-dengan-pdam-info

[2] E. Indrayuni and A. Nurhadi, “Analisis Sentimen Aplikasi Tiktok Shop Seller Center Menggunakan Naive Bayes, Svm Dan Logistic Regression,” Inti Nusa Mandiri, vol. 20, pp. 26–34, 2025, doi: 10.33480/inti.v20i1.6851.

[3] K. Khotimah, M. Martanto, A. R. Dikananda, and A. Rifa’i, “Analisis Sentimen Ulasan Aplikasi Pintu Di Google Play Store Menggunakan Algoritma Naive Bayes,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 13, no. 1, pp. 963, 963-971, 2025, doi: 10.23960/jitet.v13i1.5789.

[4] F. Zakwan, “Perbandingan Algoritma Klasifikasi Naïve Bayes,” Skripsi, Universitas Islam Negeri Ar-Raniry Banda Aceh, Bandar Lampung, 2023.

[5] I. R. Ainunnisa and S. Sulastri, “Analisis Sentimen Aplikasi Tiktok dengan Metode Support Vector Machine (SVM), Logistic Regression dan Naive Bayes,” Jurnal Teknologi Sistem Informasi dan Aplikasi, vol. 6, no. 3, pp. 423–430, 2023, doi: 10.32493/jtsi.v6i3.31076.

[6] A. N. Syafia, M. F. Hidayattullah, and W. Suteddy, “Studi Komparasi Algoritma SVM dan Random Forest Pada Analisis Sentimen Komentar Youtube BTS,” vol. 8, no. 3, pp. 207-212, 2023, doi: 10.30591/jpit.v8i3.5064.

[7] A. Wahid Mu’ammar, K. Adi Nugroho, T. Safitri, and F. Setyo Utomo, “Optimasi Logistic Regression dan Random Forest untuk Deteksi Berita Hoax Berbasis TF-IDF,” Jurnal Pendidikan dan Teknologi Indonesia (JPTI), vol. 4, no. 8, pp. 381–392, 2024, doi: 10.52436/1.jpti.602.

[8] J. E. Br Sinulingga and H. C. K. Sitorus, “Analisis Sentimen Opini Masyarakat terhadap Film Horor Indonesia Menggunakan Metode SVM dan TF-IDF,” Jurnal Manajemen Informatika (JAMIKA), vol. 14, no. 1, pp. 42–53, 2024, doi: 10.34010/jamika.v14i1.11946.

[9] T. A. E. Putri, T. Widiharih, and R. Santoso, “Penerapan Tuning Hyperparameter Randomsearchcv Pada Adaptive Boosting Untuk Prediksi Kelangsungan Hidup Pasien Gagal Jantung,” Jurnal Gaussian, vol. 11, no. 3, pp. 397–406, 2023, doi: 10.14710/j.gauss.11.3.397-406.

[10] A. D. Rachmatsyah, T. Sugihartono, and K. Irfan, “Perbandingan Teknik Optimasi Grid Search dan Randomized Search dalam Meningkatkan Akurasi Metode Klasifikasi SVM Pada Sentimen Ulasan Pengguna Aplikasi JKN Mobile,” SKANIKA: Sistem Komputer dan Teknik Informatika, vol. 8, no. 1, pp. 13–22, 2025, doi: 10.36080/skanika.v8i1.3328.

[11] S. W. Ritonga, Y., M. Fikry, and E. P. Cynthia, “Klasifikasi Sentimen Masyarakat di Twitter terhadap Ganjar Pranowo dengan Metode Naïve Bayes Classifier,” Building of Informatics, Technology and Science (BITS), vol. 5, no. 1, 2023, doi: 10.47065/bits.v5i1.3535.

[12] H. Putri, E. Rensa, N. Nur, and F. Wajidi, “Analisis Sentimen Komentar YouTube terhadap Ganjar Pranowo Pasca Pemilu 2024 dengan Pendekatan Long Short-Term Memory,” Journal of Computer and Information System (J-CIS, vol. 7, no. 2, pp. 89–98, 2024, doi: 10.31605/jcis.v7i2.

[13] I. Tri Julianto, “Analisis Sentimen Terhadap Sistem Informasi Akademik Mahasiswa Institut Teknologi Garut,” Jurnal Algoritma Institut Teknologi Garut, vol. 19, pp. 458–465, 2022, doi: https://doi.org/10.33364/algoritma/v.19-1.1112.

[14] C. E. Joergensen Munthe, N. Astuti Hasibuan, and H. Hutabarat, “RESOLUSI: Rekayasa Teknik Informatika dan Informasi Penerapan Algoritma Text Mining Dan TF-RF Dalam Menentukan Promo Produk Pada Marketplace,” RESOLUSI: Rekayasa Teknik Informatika dan Informasi, vol. 2, no. 3, pp. 110–115, 2022, doi: https://doi.org/10.30865/resolusi.v2i3.309.

[15] I. Gusti, A. Ngurah, R. Semadi, M. Samsudin, and K. Dharmendra, “Perbandingan Metode Seleksi Fitur Pada Analisis Sentimen (Studi Kasus Opini PILKADA DKI 2017),” Journal of informatics, vol. 8, no. 1, pp. 11–18, 2023, doi: https://doi.org/10.51211/itbi.v8i1.2408.

[16] R. Yusuf, K. Bahumatra, N. Komaria, E. A. Aqma, and L. Cahyani, “Analisis Sentimen Terhadap Aplikasi Google Meet Berdasarkan Komentar Pengguna Menggunakan Metode Logistic Regresion,” Jurnal Ilmiah Edutic: Pendidikan dan Informatika, vol. 11, no. 1, pp. 53–64, 2024, doi: 10.21107/edutic.v11i1.28113.

[17] B. B. Tangkere, “Analisis Performa Logistic Regression dan Support Vector Classification untuk Klasifikasi Email Phising,” Jurnal Ekonomi Manajemen Sistem Informasi (JEMSI), vol. 5, pp. 442-450, 2024, doi: 10.38035/jemsi.v5i4.

[18] R. Prabowo, H. Sujaini, and T. Rismawan, “Analisis Sentimen Pengguna Twitter Terhadap Kasus COVID-19 di Indonesia Menggunakan Metode Regresi Logistik Multinomial,” Jurnal Sistem dan Teknologi Informasi (JustIN), vol. 11, no. 2, pp. 366–370, 2023, doi: 10.26418/justin.v11i2.57449.

[19] S. A. Utiarahman, A. Mulawati, and M. Pratama, “KLIK: Kajian Ilmiah Informatika dan Komputer Analisis Perbandingan KNN, SVM, Decision Tree dan Regresi Logistik Untuk Klasifikasi Obesitas Multi Kelas,” in Media Online), 2024, pp. 3137–3146. doi: 10.30865/klik.v4i6.1871.

[20] J. Ipmawati, S. Saifulloh, and K. Kusnawi, “Analisis Sentimen Tempat Wisata Berdasarkan Ulasan pada Google Maps Menggunakan Algoritma Support Vector Machine,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 1, pp. 247–256, 2024, doi: 10.57152/malcom.v4i1.1066.

[21] N. C. Ramadani, “Analisis Sentimen Untuk Mengukur Ulasan Pengguna Aplikasi Mobile Legend Menggunakan Algoritma Naive Bayes, SVM, Random Fores, Decision Tree, dan Logistic Regression,” JSI : Jurnal Sistem Informasi (E-Journal, vol. 16, no. 1, pp. 123–138, 2024, doi: https://doi.org/10.18495/jsi.v16i1.152.

[22] A. K. Sari, et al., “Analisis Sentimen Twitter Menggunakan Machine Learning untuk Identifikasi Konten Negatif,” Adopsi Teknologi dan Sistem Informasi (ATASI), vol. 3, no. 1, pp. 64–73, 2024, doi: 10.30872/atasi.v3i1.1373.

[23] A. Tirta, P. Subandono, and D. Ariatmanto, “Optimalisasi Seleksi Fitur dalam Analisis Sentimen Bank Saqu: Studi Perbandingan SVM dan Random Forest Menggunakan Information Gain dan Chi-Square,” Sistemasi: Jurnal Sistem Informasi, vol. 14, pp. 1205–1219, 2025, doi: 10.32520/stmsi.v14i3.5106.

[24] F. Dewi, N. C. H. Wibowo, M. R. Handayani, and K. Umam, “Evaluasi Hyperparamter Tuning Pada Support Vector Machine (Svm) Dalam Klasifikasi Ulasan Hotel Di Tripadvisor,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 10, no. 3, pp. 2584–2593, 2025, doi: 10.29100/jipi.v10i3.7774.

Downloads

Published

2026-01-31

How to Cite

[1]
S. A. Ramadani, Heliawaty Hamrul, and Nurhikma Arifin, “ANALISIS PENGARUH RANDOM SEARCH PADA LOGISTIC REGRESSION DAN SUPPORT VECTOR MACHINE DALAM KLASIFIKASI SENTIMEN APLIKASI PDAM INFO”, SKANIKA, vol. 9, no. 1, pp. 61–75, Jan. 2026.