EVALUASI KINERJA KOMPUTER MIKRO RASPBERRY PI DENGAN PEMBELAJARAN MESIN UNTUK PENGENALAN WAJAH
DOI:
https://doi.org/10.36080/skanika.v9i1.3649Keywords:
CNN, Face Recognition, Machine Learnin, Raspberry Pi, SVMAbstract
Limited computing resources and high hardware costs often limit the implementation of facial recognition systems on embedded devices. This study aims to evaluate and compare the performance of Support Vector Machine (SVM) and Convolutional Neural Network (CNN) algorithms on a Raspberry Pi 4B microcomputer. The research method involves testing the CNN architecture and SVM kernel on a Kaggle dataset consisting of 2,000 facial images from five identity classes. The evaluation parameters used include accuracy, precision, recall, F-Score, resource usage (CPU/RAM), and inference speed. The test results show that the CNN algorithm achieves 93% accuracy but takes longer inference time, averaging 268.52 ms per image. On the other hand, SVM achieves 87% accuracy with much faster inference time, averaging 8.02 ms per image. Based on the test results, this study concludes that although CNN is superior in accuracy, SVM is more recommended for real-time biometric system applications on microcomputers due to its computational time efficiency and lower resource usage.
Downloads
References
[1] M. S. Kabisha, K. A. Rahim, M. Khaliluzzaman, and S. I. Khan, “Face and Hand Gesture Recognition Based Person Identification System using Convolutional Neural Network,” Int. J. Intell. Syst. Appl. Eng., vol. 10, no. 1, pp. 105–115, 2022, doi: 10.18201/ijisae.2022.273.
[2] W. Boukhari, M. Benyettou, and B. Abderrahim, “A human vision based system for biometric images recognition,” Indones. J. Electr. Eng. Comput. Sci., vol. 25, no. 3, pp. 1508–1517, 2022, doi: 10.11591/ijeecs.v25.i3.pp1508-1517.
[3] Y. Aufar and I. S. Sitanggang, “Face recognition based on Siamese convolutional neural network using Kivy framework,” Indones. J. Electr. Eng. Comput. Sci., vol. 26, no. 2, pp. 764–772, 2022, doi: 10.11591/ijeecs.v26.i2.pp764-772.
[4] Q. Sun and A. Redei, “Knock Knock, Who’s There: Facial Recognition using CNN-based Classifiers,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 1, pp. 9–16, 2022, doi: 10.14569/IJACSA.2022.0130102.
[5] J. Almotiri, “Face Recognition using Principal Component Analysis and Clustered Self-Organizing Map,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 3, pp. 509–520, 2022, doi: 10.14569/IJACSA.2022.0130361.
[6] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electron. Mark., vol. 31, no. 3, pp. 685–695, 2021, doi: 10.1007/s12525-021-00475-2.
[7] A. Yadav, E. Kumar, and P. K. Yadav, “Object detection and used car price predicting analysis system (UCPAS) using machine learning technique,” Linguist. Cult. Rev., vol. 5, no. S2, pp. 1131–1147, 2021, doi: 10.21744/lingcure.v5ns2.1660.
[8] M. Muslih and E. H. Rachmawanto, “Convolutional Neural Network (Cnn) Untuk Klasifikasi Citra Penyakit Diabetes Retinopathy,” SKANIKA, vol. 5, no. 2, pp. 167–176, 2022, doi: 10.36080/skanika.v5i2.2945.
[9] C. Durán et al., “Nonlinear machine learning pattern recognition and bacteria-metabolite multilayer network analysis of perturbed gastric microbiome,” Nat. Commun., vol. 12, no. 1, 2021, doi: 10.1038/s41467-021-22135-x.
[10] P. Chandirasekeran and S. Shridevi, “Smart Elevator Obstruction Detection System using Image Classification,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 4, pp. 134–141, 2022, doi: 10.14569/IJACSA.2022.0130416.
[11] A. Fadlil, R. Umar, Sunardi, and A. S. Nugroho, “Comparison of Machine Learning Approach for Waste Bottle Classification,” Emerg. Sci. J., vol. 6, no. 5, pp. 1075–1085, 2022, doi: 10.28991/ESJ-2022-06-05-011.
[12] M. Trigka and E. Dritsas, “A Comprehensive Survey of Deep Learning Approaches in Image Processing,” Sensors, vol. 25, no. 2, 2025, doi: 10.3390/s25020531.
[13] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects,” IEEE Trans. Neural Networks Learn. Syst., vol. 33, no. 12, pp. 6999–7019, 2021, doi: https://doi.org/10.1109/TNNLS.2021.3084827.
[14] M. Kanthi, T. H. Sarma, and C. S. Bindu, “Multi-scale 3D-convolutional neural network for hyperspectral image classification,” Indones. J. Electr. Eng. Comput. Sci., vol. 25, no. 1, pp. 307–316, 2022, doi: 10.11591/ijeecs.v25.i1.pp307-316.
[15] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman, “1D convolutional neural networks and applications: A survey,” Mech. Syst. Signal Process., vol. 151, pp. 1–21, 2021, doi: https://doi.org/10.1016/j.ymssp.2020.107398.
[16] J. Yang, T. Qian, F. Zhang, and S. U. Khan, “Real-Time Facial Expression Recognition Based on Edge Computing,” IEEE Access, vol. 9, pp. 76178–76190, 2021, doi: 10.1109/ACCESS.2021.3082641.
[17] E. Gamess and S. Hernandez, “Performance Evaluation of Different Raspberry Pi Models for a Broad Spectrum of Interests,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 2, pp. 819–829, 2022, doi: https://dx.doi.org/10.14569/IJACSA.2022.0130295.
[18] J. W. Jolles, “Methods Ecol Evol - 2021 - Jolles - Broad‐scale applications of the Raspberry Pi A review and guide for biologists.pdf,” Methods Ecol. Evol., vol. 12, no. 9, pp. 1562–1579, 2021.
[19] A. Magdi, N. A. Lashin, and O. El-komy, “Robust color image watermarking using multi-core Raspberry pi cluster,” Multimed. Tools Appl., pp. 17185–17204, 2022.
[20] A. S. Nugroho, R. Umar, and A. Fadlil, “Klasifikasi Botol Plastik Menggunakan Multiclass Support Vector Machine,” J. Khatulistiwa Inform., vol. 9, no. 2, pp. 79–85, 2021, doi: 10.31294/jki.v9i2.11058.
[21] S. B. Sapin, B. A. Alibudbud, P. B. Molleno, M. B. Veluz, and J. R. Asor, “Intelligent aquaculture system for pisciculture simulation using deep learning algorithm,” Indones. J. Electr. Eng. Comput. Sci., vol. 25, no. 1, pp. 561–568, 2022, doi: 10.11591/ijeecs.v25.i1.pp561-568.
[22] A. E. Minarno, M. H. C. Mandiri, Y. Azhar, F. Bimantoro, H. A. Nugroho, and Z. Ibrahim, “Classification of Diabetic Retinopathy Disease Using Convolutional Neural Network,” Int. J. Informatics Vis., vol. 6, no. 1, pp. 12–18, 2022, doi: 10.30630/joiv.6.1.857
[23] S. M. Abas, A. M. Abdulazeez, and D. Q. Zeebaree, “A YOLO and convolutional neural network for the detection and classification of leukocytes in leukemia,” Indones. J. Electr. Eng. Comput. Sci., vol. 25, no. 1, pp. 200–213, 2022, doi: 10.11591/ijeecs.v25.i1.pp200-213.
[24] M. Bansal, M. Kumar, M. Sachdeva, and A. Mittal, “Transfer learning for image classification using VGG19: Caltech-101 image data set,” J. Ambient Intell. Humaniz. Comput., no. 0123456789, 2021, doi: 10.1007/s12652-021-03488-z.
[25] S. Patel, R. Patel, N. Ganatra, and A. Patel, “Spatial Feature Fusion for Biomedical Image Classification based on Ensemble Deep CNN and Transfer Learning,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 5, pp. 153–159, 2022.
[26] J. Wang, X. Jing, Z. Yan, Y. Fu, W. Pedrycz, and L. T. Yang, “A Survey on Trust Evaluation Based on Machine Learning,” ACM Comput. Surv., vol. 53, no. 5, 2020.
[27] A. Huc, J. Salej, and M. Trebar, “Analysis of Machine Learning Algorithms for Anomaly Detection on Edge Devices,” Sensors, vol. 21, no. 14, pp. 1–22, 2021.
[28] N. Bartwal, “Celeb Faces Attributes Dataset (CelebA),” Kaggle. Accessed: Jul. 20, 2025. [Online]. Available: https://www.kaggle.com/datasets/nikhilbartwal001/celeba
[29] M. S. Sayeed, P. P. Min, and M. A. Bari, “Deep Learning Based Gait Recognition Using Convolutional Neural Network in the COVID-19 Pandemic,” Emerg. Sci. J., vol. 6, no. 5, pp. 1086–1099, 2022, doi: 10.28991/ESJ-2022-06-05-012.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Denis Prayogi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
CC BY-SA 4.0
Creative Commons Attribution-ShareAlike 4.0 International
This license requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, even for commercial purposes. If others remix, adapt, or build upon the material, they must license the modified material under identical terms.
BY: Credit must be given to you, the creator.
SA: Adaptations must be shared under the same terms.ng








