PERBANDINGAN KINERJA ALGORITMA KNN DAN SVM DALAM KLASIFIKASI KEMATANGAN BUAH JERUK MEDAN BERDASARKAN CITRA DIGITAL
DOI:
https://doi.org/10.36080/skanika.v9i1.3661Keywords:
Digital Image, Jeruk Medan, KNN, Ripeness Classification, SVMAbstract
As a regional flagship commodity with a promising selling value, the process of grouping the maturity level of Medan Orange is still dominated by manual visual techniques. This often triggers data inconsistency and requires a long duration of processing due to personnel subjectivity factors. This research aims to compare the performance of two machine learning algorithms, namely KNN and SVM, in classifying the maturity level of Medan Orange fruit based on digital images. The dataset used is a primary dataset collected directly from Medan Orange farmers in field conditions. The research stages include image acquisition, pre-processing, extraction of HSV-based color features and GLCM-based textures, as well as classification of maturity levels into three classes, namely raw, semi-cooked, and mature. The performance of both algorithms is evaluated using accuracy, precision, and recall metrics. The research results show that the KNN algorithm has a superior performance compared to SVM, with an accuracy rate of 96,25%, while SVM produces an accuracy of 91,25%. This result shows that KNN is effective and more suitable to be applied to the automation system of classification of the maturity of Medan Orange fruit based on digital images.
Downloads
References
[1] K. M. Harahap, D. Pangestu, D. Alfarizdi, and F. Iqbal, “Penerapan Pengolahan Citra Digital Berbasis MATLAB untuk Sortasi Ukuran dan Warna Buah Alpukat,” Jurnal Pustaka Data (Pusat Akses Kajian Database, Analisa Teknologi, dan Arsitektur Komputer), vol. 5, no. 1, pp. 22–26, 2025, doi: 10.55382/jurnalpustakadata.v5i1.967.
[2] J. Rusman and N. Pasae, “Prototype Sistem Penyortir Buah Kopi Arabika Berdasarkan Tingkat Kematangan Menggunakan Metode Support Vector Machine,” Teknika, vol. 12, no. 1, pp. 65–72, 2023, doi: 10.34148/teknika.v12i1.602.
[3] S. Siagian, K. Ibnutama, and R. Mahyuni, “Implementasi Metode Ekstraksi Ciri Warna Untuk Mendeteksi Kematangan Buah Jeruk,” Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), vol. 1, no. 6, p. 898, 2022, doi: 10.53513/jursi.v1i6.5861.
[4] K. P. Siwilopo and H. Marcos, “Membandingkan Klasifikasi pada Buah Jeruk Menggunakan Metode Convolutional Neural Network dan K-Nearest Neighbor,” Komputa : Jurnal Ilmiah Komputer dan Informatika, vol. 12, no. 1, pp. 57–64, 2023, doi: 10.34010/komputa.v12i1.9068.
[5] S. Aisyah and R. R. Winardi, “Pemanfaatan Stearin Kelapa Sawit sebagai Edible Coating Buah Jeruk Medan (Citrus sinensis L.),” Jurnal Teknologi Pertanian Andalas, vol. 27, no. 1, pp. 1–6, 2023, doi: 10.25077/jtpa.27.1.1-6.2023.
[6] M. L. Malau, S. Wulandari, and D. Kiswanto, “Penerapan Pengolahan Citra Digital Untuk Klasifikasi Rasa Jeruk Berastagi Berdasarkan Warna Dan Tekstur Dengan Metode Klasifikasi SVM,” Jurnal Pendidikan Teknologi Informasi dan Vokasional, vol. 7, no. 1, pp. 86–101, 2025, doi: 10.23960/jptiv.v7i1.32589.
[7] A. K. Ulandari, et al., “Klasifikasi Jeruk Segar dan Busuk Melalui GLCM dan HSV dengan Menggunakan Metode ANN,” Seminar Nasional Teknologi & Sains, vol. 3, no. 1, pp. 97–102, 2024, doi: 10.29407/stains.v3i1.4358.
[8] A. Angga, A. Syarif, and A. Ramadhanu, “Klasifikasi Citra Tingkat Kematangan Buah Alpukat Berdasarkan Bentuk dan Warna Menggunakan Metode K-Nearest Neighbo,” Journal of Science and Social Research, vol. 7, no. 4, pp. 1578–1583, 2024, doi: 10.54314/jssr.v7i4.2280
[9] D. F. A. Riza, et al., Y. Hendrawan, and N. Kondo, “Prediction of The Maturity Level of Pontianak Oranges (Citrus Suhuniensis CV Pontianak) Using Color and Texture Features of Digital Reflectance-Fluorescence Images and Partial Least Square (PLS) Model,” in Proceedings of the 2023 Brawijaya International Conference (BIC 2023), 2024, pp. 125–132. doi: 10.2991/978-94-6463-525-6_14.
[10] N. R. Feta, “Comparison of KNN and SVM Algorithms in Facial Image Recognition Using Haar Wavelet Feature Extraction,” Jurnal Riset Informatika, vol. 5, no. 3, pp. 321–330, 2023, doi: 10.34288/jri.v5i3.224.
[11] P. Wang, E. Fan, and P. Wang, “Comparative analysis of image classification algorithms based on traditional machine learning and deep learning,” Pattern Recognit. Lett., vol. 141, pp. 61–67, 2021, doi: 10.1016/j.patrec.2020.07.042.
[12] D. A. Ardian, et al., “Klasifikasi Tingkat Kematangan Buah Jeruk Menggunakan Arsitektur VGG16,” in SENTIMETER (Seminar Nasional Teknologi Informasi, Mekatronika dan Ilmu Komputer), 2025.
[13] V. D. Yanto and I. Handayani, “Implementation of The K-Means Clustering Algorithm in Determining the Rate of Indramayu Mango Fruit,” JSRET (Journal of Scientific, Research, Education, and Technology), vol. 3, no. 4, pp. 1929–1938, 2024, doi: 10.58526/jsret.v3i4.609.
[14] A. M. A. Efendi, S. Sriani, and M. S. Hasibuan, “Classification of Watermelon Ripeness Levels Using HSV Color Space Transformation and K-Nearest Neighbor Method,” Journal of Computer Networks, Architecture and High Performance Computing, vol. 6, no. 3, pp. 934–948, 2024, doi: 10.47709/cnahpc.v6i3.3999.
[15] J. I. Mujidah et al., “Klasifikasi Tingkat Kematangan Lada Menggunakan Ensemble Learning Berdasarkan Citra Warna Kulit,” Jurnal Informatika Progres, vol. 17, no. 2, pp. 1–11, 2025, doi: 10.56708/progres.v17i2.467.
[16] A. T. Nugroho, et al., “Fitur Tekstur Daun Aglaonema dengan Kode Local Binary Pattern Texture Features of Aglaonema Leaves with Local Binary Pattern Code,” Sistemasi: Jurnal Sistem Informasi, vol. 13, no. 4, pp. 1532–1546, 2024, doi: 10.32520/stmsi.v13i4.4180.
[17] W. Nugraha and A. Sasongko, “Hyperparameter Tuning on Classification Algorithm with Grid Search,” SISTEMASI: Jurnal Sistem Informasi, vol. 11, no. 2, pp. 391–401, 2022, doi: 10.32520/stmsi.v11i2.1750.
[18] R. A. Ichwanto, K. Q. Fredlina, and I. G. J. E. Putra, “Klasifikasi Kategori Feedback EDOM Primakara University dengan Algoritma RNN LSTM,” Journal Scientific of Mandalika (jsm), vol. 6, no. 6, pp. 1522–1532, 2025, doi: 10.36312/10.36312/vol6iss6pp1522-1532.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Fadilla Julianifa Putri, Siti Laila Nurjannah, Dwi Febrina Wati, Silvia Ariani Daulay, Indira Sistamarien, Endang Purnama Giri, Gema Parasti Mindara

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
CC BY-SA 4.0
Creative Commons Attribution-ShareAlike 4.0 International
This license requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, even for commercial purposes. If others remix, adapt, or build upon the material, they must license the modified material under identical terms.
BY: Credit must be given to you, the creator.
SA: Adaptations must be shared under the same terms.ng








