ANT NESTING OPTIMIZATION UNTUK PENINGKATAN AKURASI CNN DALAM DIAGNOSTIK BRAIN TUMOR

Authors

  • Florentina Yuni Arini Universitas Negeri Semarang
  • Aloysius Oktavian Universitas Negeri Semarang
  • Nia Nur Hidayaturrohmah Universitas Negeri Semarang
  • Daffa Pramata Aryaputra Universitas Negeri Semarang
  • Alul Hidja Syanjalih Universitas Negeri Semarang
  • Mohammad Farrel Aldevis Universitas Negeri Semarang
  • Muhammad Zidan Aisar Universitas Negeri Semarang

DOI:

https://doi.org/10.36080/skanika.v9i1.3669

Keywords:

Ant Nesting Optimization, brain tumor classification, CNN, deep learning, medical image diagnosis, MRI image

Abstract

This study discusses the application of a new optimization algorithm, namely Ant Nesting Optimization (ANO), to improve the performance of Convolutional Neural Networks (CNN) in brain tumor classification based on MRI images. ANO is inspired by the behavior of Leptothorax ants in selecting optimal nest locations, which is applied in the model's exploration and exploitation processes. The optimized CNN model shows an increase in classification accuracy of up to 97%, with superior performance in detecting various types of brain tumors. The evaluation results show that the proposed model has faster and more stable loss convergence compared to the standard model. This optimization method not only improves classification precision but also accelerates model stabilization during the training process. With these results, the research proves the effectiveness of ANO as an optimization method in deep learning networks and opens up wider application opportunities in the field of artificial intelligence-based diagnostics.

Downloads

Download data is not yet available.

References

[1] L. K. Avberšek, and G. Repovš, “Deep learning in neuroimaging data analysis: Applications, challenges, and solutions,” Frontiers in Neuroimaging, vol. 1, pp. 01-23, 2022, doi: 10.3389/fnimg.2022.981642.

[2] A. Mjahad and A. Rosado-Muñoz, “Optimizing Tumor Detection in Brain MRI with One-Class SVM and Convolutional Neural Network-Based Feature Extraction,” Journal of Imaging, vol. 11, no. 7, pp.1-27, 2025, doi: 10.3390/jimaging11070207.

[3] E. Albalawi et al., “Enhancing brain tumor classification in MRI scans with a multi-layer customized convolutional neural network approach,” Frontiers in Computational Neuroscience, vol. 18, pp: 01-19, 2024, doi: 10.3389/fncom.2024.1418546.

[4] M. Muslih and E. H. Rachmawanto, “Convolutional Neural Network (Cnn) Untuk Klasifikasi Citra Penyakit Diabetes Retinopathy,” SKANIKA, vol. 5, no. 2, pp. 167–176, 2022, doi: 10.36080/skanika.v5i2.2945.

[5] S. Mulyana, et al., “Identifikasi Penyakit Tanaman Berdasarkan Citra Daun Berbasis Web dengan Pendekatan Algoritma Convolutional Neural Network,” SKANIKA: Sistem Komputer dan Teknik Informatika, vol. 8, no. 2, pp. 305–317, 2025, doi: 10.36080/skanika.v8i2.3573.

[6] M. Rasheed, S. Iqbal, A. Jaffar, and S. Akram, “Advanced deep learning-based brain tumor classification using a novel customized CNN and optimized residual network,” PLOS One, vol. 20, no. 10, p. e0334430, 2025, doi: 10.1371/journal.pone.0334430.

[7] N. W. Tajuddin, Y. W. Wardhana, and R. Indrati, “Pemanfaatan Kecerdasan Buatan (AI) Pada MRI,” Jurnal Sudut Pandang, vol. 4, no. 6, pp. 29–37, 2024, doi: 10.55314/jsp.v4i6.814.

[8] A. M. Alhejaily, “Artificial intelligence in healthcare (Review),” Biomedical Reports, vol. 22, no. 1, pp. 1-8, 2024, doi: 10.3892/br.2024.1889.

[9] P. Mehta, S. Narwadkar, G. Chillarge, S. Rathi, G. Shinde, and C. Shewale, “A New Approach to Brain Tumor Detection with CNNS: Addressing the Issues of Standardization and Generalizability,” IJISAE: International Journal of Intelligent Systems and Applications in Engineering, vol. 12, no. 8s, pp. 01-13, 2024, Available: https://ijisae.org/index.php/IJISAE/article/view/4082

[10] M. M. Zahoor et al., “Brain Tumor MRI Classification Using a Novel Deep Residual and Regional CNN,” Biomedicines, vol. 12, no. 7, p. 1395, Autumn 2024, doi: 10.3390/biomedicines12071395.

[11] A. B. Naeem, O. Osman, S. Alsubai, T. Cevik, A. Zaidi, and J. Rasheed, “Lightweight CNN for accurate brain tumor detection from MRI with limited training data,” Frontiers in Medicine, vol. 12, 2025, doi: 10.3389/fmed.2025.1636059.

[12] M. A. Ilani, D. Shi, and Y. M. Banad, “T1-weighted MRI-based brain tumor classification using hybrid deep learning models,” Scientific Reports, vol. 15, no. 1, 2025, doi: 10.1038/s41598-025-92020-w.

[13] M. K. Jahan, et al., “CerevianNet: parameter efficient multi-class brain tumor classification using custom lightweight CNN,” Frontiers in Medicine, vol. 12, 2026, doi: 10.3389/fmed.2025.1664673.

[14] E. S. Budi, A. N. Chan, P. P. Alda, and M. A. F. Idris, “Optimasi Model Machine Learning untuk Klasifikasi dan Prediksi Citra Menggunakan Algoritma Convolutional Neural Network,” RESOLUSI: Rekayasa Teknik Informatika dan Informasi, vol. 4, no. 5, pp. 502–509, 2024, doi: 10.30865/resolusi.v4i5.1892.

[15] F. Citra R, F. Indriyani, and I. R. Rahadjeng, “Klasifikasi Tumor Otak Berbasis Magnetic Resonance Imaging Menggunakan Algoritma Convolutional Neural Network,” Digital Transformation Technology (Onlie), vol. 3, no. 2, pp. 918–924, 2024, doi: 10.47709/digitech.v3i2.3469.

[16] D. Husen, “Klasifikasi Citra MRI Tumor Otak Menggunakan Metode Convolutional Neural Network,” bit-Tech, vol. 7, no. 1, pp. 143–152, 2024, doi: 10.32877/bt.v7i1.1576.

[17] K. N. Qodri, “Analisis Perbandingan Klasifikasi Tumor Otak Menggunakan Deep Learning,” IJITECH Indonesian Journal of Information Technology, vol. 2, no. 1, pp. 16–21, 2024, doi: 10.71155/rdgrt890.

[18] N. R. Wahyudi, Y. Rahmawati, and S. Supriyanto, “Implementasi Rapidminer Untuk Menentukan Siswa Unggulan Menggunakan Metode K-Means,” SKANIKA: Sistem Komputer dan Teknik Informatika, vol. 7, no. 2, pp. 109–118, 2024, doi: 10.36080/skanika.v7i2.3173.

Downloads

Published

2026-01-31

How to Cite

[1]
F. Y. Arini, “ANT NESTING OPTIMIZATION UNTUK PENINGKATAN AKURASI CNN DALAM DIAGNOSTIK BRAIN TUMOR”, SKANIKA, vol. 9, no. 1, pp. 182–191, Jan. 2026.