KLASIFIKASI TOMAT BERDASARKAN VARIETAS DENGAN EKSTRAKSI FITUR RGB DAN ALGORITMA NAÏVE BAYES
Abstract
Tomato is a fruit-category vegetable plant that is easy to cultivate in various locations. The diversity of tomato varieties, such as Red Zebra Tomato, Green Zebra Tomato, and Kumato, often makes rapid and accurate variety identification challenging. Misclassification can impact the selection of environmental conditions and pest or disease management, ultimately leading to suboptimal cultivation results. Currently, research primarily focuses on tomato shape, diseases, and ripeness levels, while cultivar classification based on color characteristics remains limited. This study aims to develop a method for classifying tomato cultivars based on RGB color features using the Naïve Bayes algorithm. The research was conducted by collecting 45 tomato images with similar shapes but different colors (red, green, and dark red). The research stages include RGB feature extraction, data rounding, splitting training and test data with a 70:30 ratio, and classification using Naïve Bayes. A re-evaluation was performed by removing specific color attributes to assess their impact on accuracy. This study is expected to support rapid and accurate tomato variety identification, enhance efficiency in modern agriculture, and expand the application of technology in the agricultural industry to achieve advanced, self-sufficient, and modern farming. The results show that the RGB feature extraction method and the Naïve Bayes algorithm can classify tomato cultivars with an accuracy of up to 78.57%. The RG color attributes have the most significant impact on accuracy, reaching 85.71%.
Downloads
References
F. Moh, M. B. Sulthan, and I. Wahyudi, “Klasifikasi Kematangan Buah Tomat Menggunankan Fitur RGB dan HSI Berbasis Backpropagation,” Jurnal Aplikasi Teknologi Informasi dan Manajemen (JATIM), vol. 4, no. 1, pp. 84–95, 2023.
R. G. de Luna, E. P. Dadios, A. A. Bandala, and R. R. P. Vicerra, “Size classification of tomato fruit using thresholding, machine learning and deep learning techniques,” Agrivita, vol. 41, no. 3, pp. 586–596, 2019, doi: 10.17503/agrivita.v41i3.2435.
A. P. Wibawa, M. Guntur, A. Purnama, M. Fathony Akbar, and F. A. Dwiyanto, “Metode-metode Klasifikasi,” Prosiding Seminar Ilmu Komputer dan Teknologi Informasi, vol. 3, no. 1, pp. 134–138. 2018.
S. Aprilisa and Sukemi, “Klasifikasi Tingkat Kematangan Buah Tomat Berdasarkan Fitur Warna Menggunakan K-Nearest Neighhbor,” in Prosiding Annual Research Seminar, 2019, pp. 170–173.
J. Basavaiah and A. Arlene Anthony, “Tomato Leaf Disease Classification using Multiple Feature Extraction Techniques,” Wirel Pers Commun, vol. 115, no. 1, pp. 633–651, Nov. 2020, doi: 10.1007/s11277-020-07590-x.
R. Soekarta, N. Nurdjan, and A. Syah, “Klasifikasi Penyakit Tanaman Tomat Menggunakan Metode Convolutional Neural Network (CNN),” INSECT, vol. 8, no. 2, pp. 143–151, 2023.
U. Khultsum and A. Subekti, “Penerapan Algoritma Random Forest dengan Kombinasi Ekstraksi Fitur Untuk Klasifikasi Penyakit Daun Tomat,” Jurnal Media Informatika Budidarma, vol. 5, no. 1, pp. 186–193, Jan. 2021, doi: 10.30865/mib.v5i1.2624.
L. Tan, J. Lu, and H. Jiang, “Tomato Leaf Diseases Classification Based on Leaf Images: A Comparison between Classical Machine Learning and Deep Learning Methods,” AgriEngineering, vol. 3, no. 3, pp. 542–558, Sep. 2021, doi: 10.3390/agriengineering3030035.
V. Maeda-Gutiérrez et al., “Comparison of convolutional neural network architectures for classification of tomato plant diseases,” Applied Sciences (Switzerland), vol. 10, no. 4, Feb. 2020, doi: 10.3390/app10041245.
A. J. Bastari and A. Cherid, “Klasifikasi Penyakit Tanaman Tomat Menggunakan Convolutional Neural Network dan Implementasi Model H5 Pada Aplikasi Desktop,” SIMKOM, vol. 8, no. 2, pp. 199–207, Aug. 2023, doi: 10.51717/simkom.v8i2.194.
M. A. Alajrami and S. S. Abu-Naser, “Type of Tomato Classification Using Deep Learning,” International Journal of Academic Pedagogical Research, vol. 3, no. 12, pp. 21–25, 2019.
O. Belitskaya, “Tomato Cultivars,” Kaggle. Accessed: Jan. 15, 2024. [Online]. Available: https://www.kaggle.com/datasets/olgabelitskaya/tomato-cultivars/data
L. Farokhah and P. Korespondensi, “Implementasi K-Nearest Neighbor untuk Klasifikasi Bunga dengan Ekstraksi Fitur WarnaRGB,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 7, no. 6, pp. 1129–1135, 2020, doi: 10.25126/jtiik.202072608.
A. Susanto and I. U. Wahyu Mulyono, “A Good Accuracy in Apple Fruits Quality Based on Back Propagation Neural Network and Feature Extraction,” Journal of Informatics and Telecommunication Engineering, vol. 6, no. 1, pp. 38–48, Jul. 2022, doi: 10.31289/jite.v6i1.6938.
N. P. Batubara, D. Widiyanto, and N. Chamidah, “Klasifikasi Rempah Rimpang Berdasarkan Ciri Warna RGB dan Tekstur GLCM Menggunakan Algoritma Naive Bayes,” Jurnal INFORMATIK, vol. 16, no. 3, pp. 156–163, 2020.
R. Maneno, B. Baso, P. G. Manek, and K. Fallo, “Deteksi Tingkat Kematangan Buah Pinang Menggunakan Metode Support Vector Machine Berdasarkan Warna Dan Tekstur,” Journal of Information and Technology, vol. 3, no. 2, pp. 60–66, Sep. 2023, doi: 10.32938/jitu.v3i2.5323.
M. Astiningrum, P. Prima Arhandi, and N. Aqmarina Ariditya, “Identifikasi Penyakit Pada Daun Tomat Berdasarkan Fitur Warna dan Tekstur,” JIP (Jurnal Informatika Polinema) , vol. 6, no. 2, pp. 47–50, 2020.
S. Sanjaya, M. L. Pura, S. K. Gusti, F. Yanto, and F. Syafria, “K-Nearest Neighbor for Classification of Tomato Maturity Level Based on Hue, Saturation, and Value Colors,” Indonesian Journal of Artificial Intelligence and Data Mining, vol. 2, no. 2, pp. 101–106, Nov. 2019, doi: 10.24014/ijaidm.v2i2.7975.
R. N. Devita, H. W. Herwanto, and A. P. Wibawa, “Perbandingan Kinerja Metode Naive Bayes dan K-Nearest Neighbor untuk Klasifikasi Artikel Berbahasa indonesia,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 4, pp. 427–434, Oct. 2018, doi: 10.25126/jtiik.201854773.
Copyright (c) 2025 Evi Widyastuti, Arif Hermawan, Donny Avianto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.