CHATBOT BERBASIS NLP UNTUK REKOMENDASI PRODUK SKINCARE LOKAL PADA TELEGRAM

  • Syafira Cessa Agustin Bhayangkara University, Jakarta Raya
  • Prilia Hashifah Syafina Bhayangkara University, Jakarta Raya
  • Nida Rachmatin Bhayangkara University, Jakarta Raya
  • Ajif Yunizar Pratama Yusuf Bhayangkara University, Jakarta Raya
Keywords: NLP-based Chatbot, Local Skincare Industry, Telegram, Skincare Product Recommendation, Consumer Engagement

Abstract

This research applies a Natural Language Processing (NLP)-based chatbot to provide recommendations for local skincare products. Telegram, as a widely used communication platform, is an ideal medium to present this innovative solution to consumers looking for appropriate skincare products. The chatbot is designed to understand the user's needs regarding skin type, and skin concerns. By utilizing artificial intelligence, the chatbot can provide personalized recommendations of suitable local skincare products, improving consumers' access to product information and facilitating the process of selecting the right product. This research is expected to make chatbot an effective tool in finding skincare products that suit the skin, as well as increasing consumer participation in supporting the local skincare industry through instant messaging platform, telegram.

Downloads

Download data is not yet available.

References

[1] B. Y. Asaribab and T. Marcus, “Chatbot Pemilihan Produk Kosmetik Berbasis Aiml,” Jurnal Strategi, vol. 2, no. November, p. 622, 2020.
[2] D. V Perwitasari, N. H., & Putsanra, “Mengenal Arti Skincare dan Tahapan Merawat Kulit. Gaya Hidup,” 2019. https://tirto.id/mengenal-arti-skincare-dan-tahapan-merawat-kulit-eimA
[3] Oxford and U. Press., “Oxford Learner’s Dictionaries,” 2019. https://www.oxfordlearnersdictionaries.com/
[4] D. Priyanka, “Alasan Mengapa Anda Perlu Menggunakan Skin Care Sejak Dini,” 2019. https://www.beautyjournal.id/article/alasan-perlu-menggunakan-skin-care-sejak-dini
[5] A. L. Maitri and J. Sutopo, “Rancang Bangun Chatbot sebagai Pusat Informasi Lembaga Kursus dan Pelatihan Menggunakan Pendekatan Natural Language Processing,” Eprints.Uty.Ac.Id, pp. 1–9, 2019,
[6] D. G. S. Ruindungan, and A. Jacobus, “Chatbot Development for an Interactive Academic Information Services using the Rasa Open Source Framework,” Jurnal Teknik Elektro dan Komputer, vol. 10, no. p-ISSN : 2301-8402, e-ISSN : 2685-368X, pp. 61–68, 2021.
[7] S. Raharjo and S. Hartati, “Antarmuka Bahasa Alami Untuk Melakukan Query Terhadap Terjemahan Al-Quran,” Jurnal Teknologi, vol. 7, no. 1, pp. 12–19, 2014.
[8] E. Hamburger, “Why Telegram has become the hottest messaging app in the world,” The Verge, 2014.
[9] J. S. H. Ong et al, “Coding a Telegram Quiz Bot to Aid Learners in Environmental Chemistry,” Journal of Chemical Education, vol. 98, no. 8, pp. 2699–2703, 2021.
[10] R. Nofitri and J. Eska, “Implementasi Data Mining Klasifikasi C4.5 Dalam Menentukan Kelayakan Pengambilan Kredit,” Seminar Nasional Royal, vol.1 no.1, 2018.
[11] A. Muhardian, “‘Membuat Bot Telegram Tanpa Menulis Kode Program (Coding),’” petanikode.com, 2016. https://www.petanikode.com/bot-telegram-tanpa-coding/
Published
2024-01-30
How to Cite
[1]
S. Agustin, P. Syafina, N. Rachmatin, and A. Pratama Yusuf, “CHATBOT BERBASIS NLP UNTUK REKOMENDASI PRODUK SKINCARE LOKAL PADA TELEGRAM”, SKANIKA, vol. 7, no. 1, pp. 98-108, Jan. 2024.