CHATBOT DENGAN ALGORITMA MULTILAYER PERCEPTRON SEBAGAI LAYANAN INFORMASI SEKRETARIAT FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAS BUDI LUHUR
Abstract
Information service centers are very important today, with the existence of information service centers many people are helped in conveying and receiving the information needed, including in the world of higher education, information about academics is needed in teaching and learning activities in lectures. Although to get general information related to current teaching and learning activities at the Faculty of Information Technology at Budi Luhur University can be accessed through the website, supervisors and social media. But the problem now is to get information from supervisors who sometimes take too long to respond to students or even miss not responding. One way to overcome this problem is to create a chatbot system as an information service at the Faculty of Information Technology at Budi Luhur University using a natural language Natural Language Processing (NLP) approach with the Neural Network method and Multilayer Perceptron algorithm and extraction features using the binary Bag of words method by matching and giving a value of 1 to each question that is used as a token at the appropriate preprocessing stage on The train data and assigns a value of 0 to each toen that does not match the token on the train data. As well as using datasets saved in JSON format. Based on the model that has been trained to obtain accuracy and loss results with an accuracy value = 1,000 and a loss value = 0.0117, it can be concluded that the trained model is a good model.
Downloads
References
[2] A. Akbar and N. Noviani, “Tantangan dan Solusi dalam Perkembangan Teknologi Pendidikan di Indonesia,” Prosiding. Seminar Nasional Pendidikan Progrogram Pascasarjana Universitas Pgri Palembang, vol. 2, no. 1, pp. 18–25, 2019.
[3] D. S. Hormansyah and Y. P. Utama, “Aplikasi Chatbot Berbasis Web Pada Sistem Informasi Layanan Publik Kesehatan Di Malang Dengan Menggunakan Metode Tf-Idf,” Jurnal Informatika Polinema, vol. 4, no. 3, p. 224, 2018.
[4] S. Nurhayati and M. A. H, “Pembangunan Aplikasi Chatbot Midwify sebagai Media Pendukung Pembelajaran Ilmu Kebidanan Berbasis Android di Stikes Bhakti Kencana Bandung,” Komputika Jurnal Sistem Komputer, vol. 8, no. 1, pp. 45–52, 2019.
[5] A. Choesni Herlingga, I. Putra, E. Prismana, D. R. Prehanto, and D. A. Dermawan, “Algoritma Stemming Nazief & Adriani Dengan Metode Cosine Similarity Untuk Chatbot Telegram Terintegrasi Dengan E-layanan,” Jurnal Informatics Computer Science, vol. 02, 2020.
[6] A. F. Hardiyanti and D. Fitrianah, “Perbandingan Algoritma C4.5 dan Multilayer Perceptron untuk Klasifikasi Kelas Rumah Sakit di DKI Jakarta,” Jurnal Telekomunikasi dan Komputer, vol. 11, no. 3, pp. 198-209, 2021.
[7] T. F. Hadimarta, R. R. Muhima, and M. Kurniawan, “Implementasi Multilayer Perceptron Pada Jaringan Saraf Tiruan Untuk Memprediksi Nilai Valuta Asing,” INTEGER: Journal of Infomation Technology, vol. 5, no. 1, pp. 56–63, 2020.
[8] D. Sinaga, “Jaringan Saraf Tiruan Infeksi Mata Dengan Menggunakan Metode Beraksitektur Multi Layer Perceptron,” INTI: Majalah Ilmiah (Informasi dan Teknologi Ilmiah, vol. 7, no. 2, pp. 189–192, 2020.
[9] K. Heryandi Suradiradja, “Algoritme Machine Learning Multi-Layer Perceptron dan Recurrent Neural Network untuk Prediksi Harga Cabai Merah Besar di Kota Tangerang,” Fakta Exacta, vol. 14, no. 4, pp. 194–205, 2021.
[10] N. Busiarli, L. A. Aditya, and A. Y. Andika, “Penerapan Algoritma Naïve Bayes & Natural Language Processing Untuk Mengklasifikasi Jenis Berita,” Seminar Nasional Teknologi Informasi dan Multimedia, pp. 6–7, 2016.