PENERAPAN METODE SUPPORT VECTOR MACHINE DALAM CLASSIFIKASI ULASAN PENGGUNA APLIKASI MOBILE JKN
Abstract
JKN Mobile application has become one of the main means for Indonesians to access health services provided by the National Health Insurance (JKN) program. In this context, sentiment analysis of user reviews of the JKN Mobile application is important to understand user perceptions and experiences. This research uses the SVM classification method to carry out in-depth sentiment analysis of user reviews of the JKN Mobile application. Research steps include collecting user review data, data preprocessing, feature extraction, data sharing, SVM model training, and model performance evaluation. User review data is collected and processed, then trained using an SVM model to classify review sentiment into positive, negative, or neutral. This research tested the level of accuracy by comparing the distribution of training data with testing data. The aim of this method is to explore various optimization techniques to increase the accuracy of the SVM model in classifying the sentiment of user reviews of the JKN Mobile application. This can include using optimization algorithms such as Particle Swarm Optimization (PSO) to find the best parameters for the SVM model. The research results show that the SVM accuracy level after implementing PSO or Grid Search experienced an increase in accuracy, initially the SVM accuracy level was 81%, after optimization, the accuracy level obtained a higher accuracy of 85%.
Downloads
References
[2] N. Maulida, N. Suarna, and W. Prihartono, “Analisis Ulasan Sentimen Aplikasi Mobile JKN Dengan Algoritma Support Vector Machine Berbasis Particle Swarm Optimization,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 2, pp. 1651-1658, 2024.
[3] D. I. Sumantiawan, J. E. Suseno, and W. A. Syafei, “Sentiment Analysis of Customer Reviews Using Support Vector Machine and Smote-Tomek Links for Identify Customer Satisfaction,” Jurnal Sistem Informasi Bisnis, vol. 13, no. 1, pp. 1–9, 2023.
[4] V. I. Santoso, G. Virginia, and Y. Lukito, “Penerapan Sentiment Analysis Pada Hasil Evaluasi Dosen Dengan Metode Support Vector Machine,” Jurnal Transformatika, vol. 14, no. 2, pp. 79-83, 2017.
[5] C. K. Wang, “Sentiment Analysis Using Support Vector Machines, Neural Networks, and Random Forests,” Proceeding of the 2023 International Conference on Image, Algoritms and Artificial Intelegence (ICIAAI 2023), pp. 23–34, 2023.
[6] M. F. Madjid, D. E. Ratnawati, and B. Rahayudi, “Sentiment Analysis on App Reviews Using Support Vector Machine and Naïve Bayes Classification,” Sinkron, vol. 7, no. 1, pp. 556–562, 2023.
[7] O. Somantri and D. Apriliani, “Support Vector Machine Berbasis Feature Selection Untuk Sentiment Analysis Kepuasan Pelanggan Terhadap Pelayanan Warung dan Restoran Kuliner Kota Tegal”, Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 5, no. 5, pp. 537-348, 2018.
[8] D. Darwis, E. S. Pratiwi, A. F. O. Pasaribu, “Penerapan Algoritma SVM Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,” Jurnal Ilmiah Educatic Pendidikan dan Informatika, vol. 7, no. 1, pp.1-11, 2020.
[9] I. N. Switrayana, et al., “Sentiment Analysis and Topic Modeling of Kitabisa Applications using Support Vector Machine (SVM) and Smote-Tomek Links Methods,” International Journal of Engineering and Computer Science Applications (IJECSA), vol. 2, no. 2, pp. 87–98, Sep. 2023.
[10] F. Farasalsabila, et al., “Sentiment Analysis for IMDb Movie Review Using Support Vector Machine (SVM) Method,” Inform: Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi, vol. 8, no. 2, pp. 90–95, 2023.
[11] R. Mukarramah, D. Atmajaya, and L. B. Ilmawan, “Performance comparison of support vector machine (SVM) with linear kernel and polynomial kernel for multiclass sentiment analysis on twitter,” ILKOM Jurnal Ilmiah, vol. 13, no. 2, pp. 168–174, 2021
[12] U. I. Larasati, et al., “Improve the Accuracy of Support Vector Machine Using Chi Square Statistic and Term Frequency Inverse Document Frequency on Movie Review Sentiment Analysis,” Scientific Journal of Informatics, vol. 6, no. 1, pp. 2407–7658, 2019.
[13] M. Zuhri, A. Qur’ania , M. Mulyati, “Sentiment Analysis of Opinions on the Use of Devices in Students Using the Support Vector Machine (SVM) Method,” Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika, vol. 20, no. 1, pp. 51–55, 2023.
[14] S. H. Imanuddin, K. Adi, and R. Gernowo, “Sentiment Analysis on Satusehat Application Using Support Vector Machine Method,” Journal of Electronics, Electromedical Engineering, and Medical Informatics, vol. 5, no. 3, pp. 143–149, 2023.
[15] N. A. Poedjimartojo, D. Pramesti, and R. Y. Fa’rifah, “Sentiment Analysis on Public Opinion of Electric Vehicles Usage in Indonesia using Support Vector Machine Algorithms,” Teknika: Jurnal Sains dan Teknologi, vol. 19, pp. 152–160, 2023.
[16] M. M. Rohman, I. Indriati, and S. Adinugroho, “Analisis Sentimen pada Ulasan Aplikasi Mobile JKN Menggunakan Metode Maximum Entropy dan Seleksi Fitur Gini Index Text,” JPTIIK: Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 6, pp. 2646-2654, 2021.
[17] S. Roiqoh, B. Zaman, K. Kartono, “Analisis Sentimen Berbasis Aspek Ulasan Aplikasi Mobile JKN dengan Lexicon Based dan Naïve Bayes,” Jurnal Media Informatika Budidarma, vol. 7, no. 3, pp. 1582-1592, 2023.
[18] F. Rahmadayana and Y. Sibaroni, “Sentiment Analysis of Work from Home Activity using SVM with Randomized Search Optimization,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 5, pp. 936–942, 2021.
[19] A. Muis, A. Mubarak, A. M. Mamonto, and S. D. Surya, “Support Vector Machine (SVM) Algorithm for Student Sentiment Analysis of Online Lectures,” Jurnal Informatika dan Komputer(JIKO), vol. 6, no. 1, pp. 43-51, 2023.
[20] S. Roiqoh, B. Zaman and K. Kartono, “Analisis Sentimen Berbasis Aspek Ulasan Aplikasi Mobile JKN dengan Lexicon Based dan Naïve Bayes,” Jurnal Media Informatika Budidarma, vol. 7, no. 3, pp.1582-1592, 2023.