KLASIFIKASI DATA MINING DI TINGKAT KEPUASAN MAHASISWA TERHADAP PELAYANAN SISTEM INFORMASI FAKULTAS TEKNIK UNIVERSITAS NURUL JADID

  • Ahmad Naufal Waliyus Zain Universitas Nurul Jadid
  • Muafi Muafi Universitas Nurul Jadid
  • Abu Tholib Universitas Nurul Jadid
Keywords: student satisfaction, data mining, naive bayes, classification

Abstract

This research aims to assess impacts of information system services on student satisfaction to prevent dissatisfaction with campus information services. Students become active members of the academic community at higher education, are the center point of this investigation. Because the measurement of student satisfaction level on information services at the Faculty of Engineering is still unknown. By measuring student satisfaction, the faculty can improve the quality of service information system. The importance of campus information system services cannot be overstated because it serves as the main center for information management in higher education. in higher education. By using the Naïve Bayes Algorithm for the method used in this research utilizes simplicity and ease of application. its application. Data was collected through a questionnaire technique filled out by students of faculty of Engineering. The questionnaire contains about the quality of information systems and information service quality. A total of 316 student datasets were collected from 3 study programs in the Faculty of Engineering namely informatics, electrical engineering, and information technology study programs. Testing using naïve Bayes algorithm accuracy value of 94%, precision of 92% recall of 95%, and f1-score of 93%. It is hoped that this research can play an important role in improving the existing information system services to increase effectiveness. information system services to increase effectiveness.

Downloads

Download data is not yet available.

References

[1] E. Widawati and Siswohadi, “Analisis Tentang Kepuasan Mahasiswa Terhadap Pelayanan Akademik Dan Pelayanan Administrasi,” J. Mitra Manaj., vol. 4, no. 10, pp. 1500–1513, 2020.
[2] R. R. Rerung and Y. R. Ramadhan, “Rancang Bangun Sistem Informasi Akademik Dalam Penerapan Smart Campus Untuk Meningkatkan Pelayanan Akademik,” JTERA (Jurnal Teknol. Rekayasa), vol. 3, no. 2, pp. 191-210, 2018.
[3] T. Widiastuti, K. Karsa, and C. Juliane, “Evaluasi Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Akademik Menggunakan Metode Klasifikasi Algoritma C4.5,” Technomedia J., vol. 7, no. 3, pp. 364–380, 2022.
[4] D. A. R. Saragih, M. Safii, and D. Suhendro, “Penerapan Data Mining Klasifikasi Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Sistem Informasi di Program Studi Sistem Informasi,” Journal of Information System Research (JOSH), vol. 2, no. 2, pp. 173–177, 2021.
[5] Y. S. T. Allo, V. Sofica, N. Hasan, and M. Septiani, “Penggunaan Metode Naïve Bayes Dalam Mengklasifikasi Pengangguran Pada Desa Bojong Kulur,” Bianglala Inform., vol. 10, no. 1, pp. 30–35, 2022.
[6] A. Triayudi and W. O. Widyarto, “Educational Data Mining Analysis Using Classification Techniques,” J. Phys. Conf. Ser., vol. 1933, no. 1, 2021.
[7] S. Sudriyanto, A. Khairi, and A. S. Hikam, “Penerapan Algoritma K-Means Untuk Clustering Santri Pra-Sejahtera Di Yayasan Bantuan Sosial (YBS) Az-Zainiyyah Pondok Pesantren Nurul Jadid,” NJCA (Nusantara J. Computers and Its Application, vol. 8, no. 1, pp. 22-23, 2023.
[8] A. Z. M. Sigid Widodo, A. Pandu Kusuma, and W. Dwi Puspitasari, “Analisis Algoritma Naive Bayes Classifier (Nbc) Pada Klasifikasi Tingkat Minat Barang Di Toko Violet Cell,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 87–94, 2023.
[9] I. Mahendro and D. Abimanto, “Analisa Kepuasan Mahasiswa Terhadap E-Learning Menggunakan Algoritma Support Vector Machine,” J. Sains Dan Teknol. Marit., vol. 23, no. 1, pp. 97-108, 2022.
[10] A. Natuzzuhriyyah and N. Nafisah, “Klasifikasi Tingkat Kepuasan Mahasiswa Terhadap Pembelajaran Secara Daring Menggunakan Algoritma Naïve Bayes,” Techno Xplore J. Ilmu Komput. dan Teknol. Inf., vol. 6, no. 2, pp. 61–67, 2021.
[11] A. Triayudi, “Penerapan Algoritma C5.0 Data Mining Untuk Mengetahui Pola Kepuasan Mahasiswa Terhadap Pelayanan Akademik,” J. Media Inform. Budidarma, vol. 6, no. 4, pp. 2361-2366, 2022.
[12] M. Siddik, H. Hendri, R. N. Putri, Y. Desnelita, and G. Gustientiedina, “Klasifikasi Kepuasan Mahasiswa Terhadap Pelayanan Perguruan Tinggi Menggunakan Algoritma Naïve Bayes,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 3, no. 2, pp. 162–166, 2020.
[13] M. S. Mustafa, M. R. Ramadhan, and A. P. Thenata, “Implementasi Data Mining untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,” Creat. Inf. Technol. J., vol. 4, no. 2, p. 151-162, 2018.
[14] G. Gustientiedina, M. Siddik, and Y. Deselinta, “Penerapan Naïve Bayes untuk Memprediksi Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Akademis,” J. Infomedia, vol. 4, no. 2, pp. 89-93, 2020.
[15] F. A. D. Aji Prasetya Wibawa, Muhammad Guntur Aji Purnama, Muhammad Fathony Akbar, “Metode-metode Klasifikasi,” Pros. Semin. Ilmu Komput. dan Teknol. Inf., vol. 3, no. 1, p. 134, 2018.
[16] M. H. Tinambunan, A. Hasibuan, S. Wahyuni, and A. S. Wibowo, “Klasifikasi Tingkat Kepuasan Mahasiswa Terhadap Fasilitas Pada Ftik Universitas Dharmawangsa," Jurnal Bisnis Net, vol. 6, no. 1, pp. 208–215, 2023.
[17] G. H. Herlambang, A. Nugroho, and B. Zaman, “Klasifikasi Perkiraan Kelulusan Mahasiswa Jenjang Magister Menggunakan Metode Naive Bayes,” NJCA (Nusantara J. Comput. Its Appl., vol. 5, no. 1, pp. 40–46, 2020.
[18] H. D. Wijaya and S. Dwiasnati, “Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat,” J. Inform., vol. 7, no. 1, pp. 1–7, 2020.
[19] D. Nugraha and D. Gustian, “Analisis Sentimen Penggunaan Aplikasi Transportasi Online Pada Ulasan Google Play Store Menggunakan Algoritma Svm (Support Vector Machine),” SISMATIK (Seminar Nas. Sist. Inf. dan Manaj. Inform., vol. 1, no. 1, pp. 326–335, 2023.
[20] U. O. R. Permatasari, W. J. Shudiq, and M. Jasri, “Prediksi Kelayakan Mahasiswa sebagai Penerima Beasiswa Bank Indonesia pada Tahap Seleksi Administrasi di Universitas Nurul Jadid Menggunakan Algoritma K Nearest Neighbor,” J. Electr. Eng. Comput., vol. 6, no. 1, pp. 252–260, 2024.
Published
2024-07-26
How to Cite
[1]
A. Zain, M. Muafi, and A. Tholib, “KLASIFIKASI DATA MINING DI TINGKAT KEPUASAN MAHASISWA TERHADAP PELAYANAN SISTEM INFORMASI FAKULTAS TEKNIK UNIVERSITAS NURUL JADID”, SKANIKA, vol. 7, no. 2, pp. 204-213, Jul. 2024.