SISTEM MONITORING KEADAAN DARURAT BERDASARKAN CAPTION INSTAGRAM MENGGUNAKAN NAÏVE BAYES DENGAN JARAK LEVENSHTEIN

  • Muhammad Fahmi Zulfikar Universitas Budi Luhur
  • Utomo Budiyanto Universitas Budi Luhur
Keywords: Instagram, Emergency, Geographic Information System, Multinomial Naive Bayes, Levenshtein Distance Algorithm

Abstract

In this digital era, Instagram is not only the most popular photo and story sharing platform, but also acts as a source of important and critical information such as information about emergency situation. This research aims to utilize caption data from Instagram posts to produce a map showing the location of emergency situations in South Jakarta. From 1088 captions, 204 of them were successfully identified as informative and relevant texts for this study. The informative data then processed and visualized as a geographic information system using the OpenStreetMap map and the Overpass Turbo API, so that the resulting information can be more easily understood and can be used as material for further analysis by the public or authorities. This research combines the TF-IDF and Multinomial Naïve Bayes methods for classifying informative or uninformative captions on Instagram posts, as well as the Levenshtein Distance Algorithm for cleaning the dataset by correcting typos to reduce dimensions and improve the quality of the data that are going to be analyzed. The challenge in overcoming data imbalance is by implementing three text augmentation techniques, namely synonym replacement, random swap, and random deletion. From the model training process, an accuracy rate of 92,6% was obtained. This result shows that the proposed method is not only effective in improving classification accuracy, but also successfully provides informative visualizations related to the location and frequency of emergencies in South Jakarta.

Downloads

Download data is not yet available.

References

[1] D. Zeng, H. Chen, R. Lusch, and S.-H. Li, “Social Media Analytics and Intelligence,” IEEE Intell. Syst., vol. 25, no. 6, pp. 13–16, 2010.
[2] W. Gao, L. Li, X. Zhu, and Y. Wang, “Detecting Disaster-Related Tweets Via Multimodal Adversarial Neural Network,” IEEE Multimed., vol. 27, no. 4, pp. 28–37, 2020.
[3] W. Gata, F. Amsury, N. K. Wardhani, I. Sugiyarto, D. N. Sulistyowati, and I. Saputra, “Informative Tweet Classification of the Earthquake Disaster Situation In Indonesia,” in 2019 5th International Conference on Computing Engineering and Design (ICCED), Singapore, Singapore, Apr. 2019, pp. 1–6.
[4] “Digital 2024,” Digital 2024-We Are Social Indonesia, Jan. 31, 2024. https://wearesocial.com/id/blog/2024/01/digital-2024/ (accessed Apr. 26, 2024).
[5] “Infografis Kejadian Bencana 2023,” Infografis Kejadian Bencana 2023, 2024. https://bpbd.jakarta.go.id/perpustakaan/220/infografis-kejadian-bencana-2023 (accessed Apr. 26, 2024).
[6] H. Krishnan, A. Roy, A. K. Menon, D. S, and H. M. Babu, “Natural Disaster Detection Using Social Media,” in 2023 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA), Ernakulam, India, 2023, pp. 1–6.
[7] K. M. A. Pasaribu, R. E. Saputra, and C. Setianingsih, “Sistem Informasi Monitoring Bencana Alam Dari Data Media Sosial Menggunakan Metode K-Nearest Neighbor,” E-Proceeding Eng., vol. 8, Aug. 2021.
[8] H. Hassani, C. Beneki, S. Unger, M. T. Mazinani, and M. R. Yeganegi, “Text Mining in Big Data Analytics,” Big Data Cogn. Comput., vol. 4, no. 1, pp. 1-34, Jan. 2020.
[9] I. Afdhal, R. Kurniawan, I. Iskandar, R. Salambue, E. Budianita, and F. Syafria, “Penerapan Algoritma Random Forest Untuk Analisis Sentimen Komentar Di YouTube Tentang Islamofobia,” vol. 5, no. 1, pp. 122-130, 2022.
[10] L. Hickman, S. Thapa, L. Tay, M. Cao, and P. Srinivasan, “Text Preprocessing for Text Mining in Organizational Research: Review and Recommendations,” Organ. Res. Methods, vol. 25, no. 1, pp. 114–146, 2022.
[11] A. N. Azizah, M. Falach Asy’ari, I. Wisma Dwi Prastya, and D. Purwitasari, “Easy Data Augmentation untuk Data yang Imbalance pada Konsultasi Kesehatan Daring,” J. Teknol. Inf. Dan Ilmu Komput., vol. 10, no. 5, pp. 1095–1104, 2023.
[12] A. Sabrani and J. Majapahit, “Metode Multinomial Naïve Bayes Untuk Klasifikasi Artikel Online Tentang Gempa Di Indonesia,” vol. 2, no. 1, pp. 89-100, 2020.
[13] N. L. Octaviani, E. Hari Rachmawanto, C. A. Sari, and I. M. S. De Rosal, “Comparison of Multinomial Naïve Bayes Classifier, Support Vector Machine, and Recurrent Neural Network to Classify Email Spams,” in 2020 International Seminar on Application for Technology of Information and Communication (iSemantic), Semarang, Indonesia, Sep. 2020, pp. 17–21.
[14] S. Kadam, A. Gala, P. Gehlot, A. Kurup, and K. Ghag, “Word Embedding Based Multinomial Naive Bayes Algorithm for Spam Filtering,” in 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, Aug. 2018, pp. 1–5.
[15] D. Berrar, “Bayes’ Theorem and Naive Bayes Classifier,” in Encyclopedia of Bioinformatics and Computational Biology, Elsevier, 2018, pp. 403–412.
[16] D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” vol. 5, no. 2, pp. 697-711, 2021.
[17] H. Dalianis, “Evaluation Metrics and Evaluation,” in Clinical Text Mining, Cham: Springer International Publishing, 2018, pp. 45–53.
Published
2025-01-30
How to Cite
[1]
M. Zulfikar and U. Budiyanto, “SISTEM MONITORING KEADAAN DARURAT BERDASARKAN CAPTION INSTAGRAM MENGGUNAKAN NAÏVE BAYES DENGAN JARAK LEVENSHTEIN”, SKANIKA, vol. 8, no. 1, pp. 1-12, Jan. 2025.