IMPLEMENTASI FP-GROWTH DAN FUZZY TSUKAMOTO UNTUK MENENTUKAN PERSENTASE KUOTA JALUR MASUK PERGURUAN TINGGI

Authors

  • Nafa Khairunnisa UIN Sunan Gunung Djati Bandung
  • Jumadi Jumadi UIN Sunan Gunung Djati Bandung
  • Ichsan Taufik UIN Sunan Gunung Djati Bandung

DOI:

https://doi.org/10.36080/skanika.v8i1.3337

Keywords:

FP-Growth, fresh graduate, fuzzy tsukamoto, KDD, PMB

Abstract

Every university strives to achieve or maintain excellent accreditation. Students who graduate with a satisfactory predicate play an important role in determining the accreditation. According to BAN-PT 2021, a university is considered excellent if it has students with a maximum study period of 4.5 years and an average GPA ≥ 3.25. One way to maintain it is to optimally manage the distribution of quotas for the New Student Admission (PMB) entrance pathway. This study aims to investigate how the variables of GPA, study period, and entry path in the data of graduates relate to each other. To get the association pattern between these variables, FP-Growth is used. Furthermore, the percentage of quota distribution is calculated using Fuzzy Tsukamoto. From this research, the accuracy of the model is 94.42% and the precision value is 62.5%, which indicates that the method used is effective in helping determine the optimal quota distribution for PMB. Thus, these results can be used to support university policies in determining a more appropriate quota distribution to support the achievement of superior accreditation.

Downloads

Download data is not yet available.

References

[1] B. A. N. P. Tinggi, “Badan Akreditasi Nasional Perguruan Tinggi Jakarta 2020,” pp. 5–7, 2020.
[2] C. Puspitasari, “Sekilas tentang Data Science, Data Mining, dan Machine Learning,” 2022. https://binus.ac.id/malang/2022/05/sekilas-tentang-data-science-data-mining-dan-machine-learning/ (accessed Oct. 22, 2024).
[3] I. M. Gufron, and U. Budiyanto, “Algoritma FP-Growth Untuk Mengkaji Pola Belanja Konsumen Pada Baby Shop By Netti,” Seminar Nasional Mahasiswa Fakultas Teknologi Informasi, vol. 1, no. 1, pp. 479–487, 2022.
[4] J. Jafar, and N. Rahaningsih, “Menentukan Pola Reservasi Hotel dengan Algoritma Fp-Growth,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 1, pp. 540–546, 2023.
[5] A. Anggrawan, M. Mayadi, and C. Satria, “Menentukan Akurasi Tata Letak Barang dengan Menggunakan Algoritma Apriori dan Algoritma FP-Growth,” MATRIK J. Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21, no. 1, pp. 125–138, 2021.
[6] A. Almira, Suendri, and A. Ikhwan, “Implementasi Data Mining Menggunakan Algoritma FP-Growth pada Analisis Pola Pencurian Daya Listrik,” Jurnal Informatika Universitas Pamulang, vol. 6, pp. 442–448, 2021.
[7] T. Dewi, R. Astuti, and Y. Arie Wijaya, “Analisis Pola Pembelian Makanan dan Minuman di Kedai Distrik Menggunakan Algoritma Fp-Growth,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 238–243, 2024.
[8] C. C. Citra, et al., “Implementasi Metode Fuzzy Tsukamoto Dalam Menentukan Supply BBM Pada Pertashop,” SKANIKA: Sistem Komputer dan Teknik Informatika, vol. 5, no. 2, pp. 157–166, 2022.
[9] P. Gloria, and E. Sediyono, “Perancangan Sistem Rekomendasi Pemberian Beasiswa dengan Metode Fuzzy Tsukamoto,” ITA: Journal of Information Technology Ampera, vol. 3, no. 2, pp. 124–147, 2022.
[10] N. Rahmi, et al., “Analisis Penerapan Fuzzy Tsukamoto dalam Penentuan Kelayakan Keikutsertaan Siswa pada SNMPTN,” Jurnal Ilmiah SISFOTENIKA, vol. 14, no. 2, pp. 185–196, 2024.
[11] M. N. M. Br.Sipahutar, O. S. Sitompul, and S. Sutarman, “Association Rules Analysis Using Algorithm Apriori And Fuzzy Normalization,” in 2021 IEEE International Conference on Health, Instrumentation & Measurement, and Natural Sciences (InHeNce), 2021, pp. 1–5.
[12] Q. Widayati, “Penerapan Data Mining Menggunakan Metode Teknik Classification (Qoriani Widayati),” Jurnal Ilmiah MATRIK, vol. 20, no. 2, pp. 163–174, 2018.
[13] A. Rindengan and A. . L. Yohanes, Sistem Fuzzy. 2019.
[14] A. Burhanuddin, “Analisis Komparatif Inferensi Fuzzy Tsukamoto, Mamdani dan Sugeno Terhadap Produktivitas Padi di Indonesia,” LEDGER: Journal Informatic and Information Technology, vol. 2, no. 1, pp. 48–57, 2023.
[15] N. Ratama, Fuzzy Inference System Metode Tsukamoto dalam Melakukan Evaluasi Kinerja. Eureka Media Aksara, 2023.

Downloads

Published

2025-01-30

How to Cite

[1]
N. Khairunnisa, J. Jumadi, and I. Taufik, “IMPLEMENTASI FP-GROWTH DAN FUZZY TSUKAMOTO UNTUK MENENTUKAN PERSENTASE KUOTA JALUR MASUK PERGURUAN TINGGI”, SKANIKA, vol. 8, no. 1, pp. 121–132, Jan. 2025.