KLASIFIKASI KOMENTAR NETIZEN X TENTANG PEMECATAN SHIN TAE YONG DARI PSSI DENGAN ALGORITMA NAIVE BAYES
DOI:
https://doi.org/10.36080/skanika.v9i1.3605Keywords:
confusion matrix, multinomial naive bayes, sentiment analysis, text mining, xAbstract
The dismissal of the Indonesian National Football Team head coach, Shin Tae-yong, generated diverse public reactions on the social media platform X. The large volume and variability of netizen comments require a systematic analysis to objectively understand public opinion. This study aims to analyze the sentiment of netizen comments regarding the dismissal of Shin Tae-yong using a text mining approach and the Multinomial Naive Bayes algorithm. The data were collected from social media X through a crawling process and subsequently processed through preprocessing stages and TF-IDF weighting. The classification results demonstrate that the proposed model achieved good performance, with an accuracy of 91.3%, precision of 94.94%, recall of 79.43%, and an F1-score of 85.4%. The prediction results were dominated by negative sentiments (275 instances), followed by positive (40 instances) and neutral sentiments (30 instances). These findings indicate that public opinion tends to be predominantly negative toward the decision, while the classification model effectively categorizes sentiments. This study is expected to serve as a reference for understanding public opinion in national sports issues and to support data-driven decision-making.
Downloads
References
[1] I. S. Arfan, S. Fauziah, and I. Nawangsih, “Analisis Sentimen Terhadap Cyber Bullying di X Menggunakan Algoritma Naïve Bayes,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 4, pp. 1411–1419, 2024, doi: 10.57152/malcom.v4i4.1550
[2] A. Riska, E. Saputri, F. Azzahra, M. R. Aditya, dan T. Patrianti, “Analisis respon netizen terhadap pemutusan kontrak coach shin tae-yong di postingan instagram @timnasindonesia,” 2025.
[3] A. Fahrudin dan A. A. Wulandari, “Dinamika Opini Publik di Media Sosial Tiktok,” Jurnal Ilmiah Teknik Informatika dan Komunikasi, vol. 5, no. 2, pp. 506–524, 2025, doi: 10.55606/juitik.v5i2.1156.
[6] J. Ade Nursiyono, and C. Chotimah, “Analisis Sentimen Netizen Twitter terhadap Pemberitaan PPN Sembako dan Jasa Pendidikan dengan Pendekatan Social Network Analysis dan Naive Bayes Classifier,” J Statistika: Jurnal Ilmiah Teori dan Aplikasi Statistika, vol. 14, no. 1, pp. 52-58, 2021, doi: 10.36456/jstat.vol14.no1.a3868.
[7] P. Lestari and F. Irwiensyah, “Analisis Sentimen Pendapat Netizen Indonesia Terhadap Pengungsi Rohingya Pada Aplikasi X Menggunakan Algoritma Naive Bayes,” SinkrOn, vol. 8, no. 3, pp. 1945-1952, 2024, doi: 10.33395/sinkron.v8i3.13940.
[8] K. Alahmadi, S. Alharbi, J. Chen, and X. Wang, “Generalizing sentiment analysis: a review of progress, challenges, and emerging directions,” Social Network Analysis and Mining, vol. 15, no. 1, pp. 15-45, 2025, doi: 10.1007/s13278-025-01461-8.
[9] M. Das, S. Kamalanathan, and P. Alphonse, “A Comparative Study on TF-IDF feature Weighting Method and its Analysis using Unstructured Dataset,” 2020.
[10] A. N. Alif, et al., “Penerapan Naïve Bayes & Support Vector Machine untuk Analisis Sentimen Pilpres Pada Platform X” KRESNA: Jurnal Riset dan Pengabdian Masyarakat, vol. 4, no. 2, pp. 151-160, 2024, doi: 10.36080/kresna.v4i2.181.
[11] D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” 2021.
[12] M. I. Yusuf, et al., “Analisis Sentimen Komentar Netizen Instagram Terhadap Racism di Sepak Bola Indonesia Dengan Metode Naive Bayes,” COLLINS-2021: 5th International Conference on Computational Linguistics and Intelligent Systems, April 22-23, 2021. Kharkiv, Ukraine, pp.1-10, doi: 10.48550/arXiv.2308.04037
[13] R. Indransyah, Y. H. Chrisnanto, P. N. Sabrina, and S. Kom, “Klasifikasi Sentimen Pergelaran MOTOGP di Indonesia Menggunakan Algoritma Correlated Naive Bayes Clasifier”, Infotech, vol. 8, no. 2, pp. 60-66, 2022, doi: 10.31949/infotech.v8I2.3103.
[14] A. Cahya Kamilla et al., “Analisis Sentimen Film Agak Laen Dengan Kecerdasan Buatan: Text Mining Metode Naive Bayes Classifier,” JATI: Jurnal Mahasiswa Teknik Informatika, vol. 8, no. 3, pp. 2923-2928, 2024, doi: 10.36040/jati.v8i3.9587.
[15] S. Alpin Rizaldi, S. Alam, and I. Kurniawan, “Analisis Sentimen Pengguna Aplikasi JMO (Jamsostek Mobile) Pada Google Play Store Menggunakan Metode Naive Bayes,” STORAGE: Jurnal Ilmiah Teknik Ilmu Komputer, vol. 2, no. 3, pp. 109–117, 2023, doi: 10.55123.
[16] S. Adelia, et al., “Analisis Sentimen Belajar Programming Pada Media Sosial Youtube Menggunakan Algoritma Klasifikasi Naive Bayes,” Journal of Information Technology Ampera, vol. 4, no. 3, pp. 254-264, 2023, doi: 10.51519/journalita.v4i3.430
[17] Y. Prasetyo, “Perencanaan Arsitektur Enterprise Smart School Menggunakan Togaf: Studi Kasus SMK Negeri 13 Bandung,” Jurnal Ilmiah Ilmu Terapan Universitas Jambi, vol. 5, no. 1, pp. 16-30, 2021, doi: 10.22437/jiituj.v5i1.12885.
[18] O. I. Gifari, et al., “Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine,” JIFOTECH: Journal of Information Technology, vol. 2, no. 1, pp. 36-40, 2022, doi: 10.46229/jifotech.v2i1.330.
[19] A. Sabrani, I. W. G. P. W. Wedashwara, and F. Bimantoro, “Metode Multinomial Naive Bayes untuk Klasifikasi Artikel Online Tentang Gempa di Indonesia,” JTIK: Jurnal Teknologi, Komputer dan Aplikasinya, vol. 2, no. 1, pp. 89-100, doi: 10.29303/jtika.v2i1.87
[20] E. Martantoh and N. Yanih, “Implementasi Metode Naïve Bayes Untuk Klasifikasi Karakteristik Kepribadiaan Siswa Di Sekolah MTS Darussa’adah Menggunakan PHP MySQL,” JTSI: Jurnal Teknologi Sistem Informasi, vol. 3, no. 2, pp. 166-175, 2022, doi: 10.35957/jtsi.v3i2.2896.
[21] G. P. Rezi, and I. Imelda, “Perbandingan Naive Bayes dan KNN Untuk Sentimen Kesadaran Lingkungan Di Konten Pandawara Group,” Prosiding SENAFTI Ke-6 September 2025, vol. 4, no. 2, 2025, pp. 632-640.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Rizky Hidayat, Windarto Windarto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
CC BY-SA 4.0
Creative Commons Attribution-ShareAlike 4.0 International
This license requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, even for commercial purposes. If others remix, adapt, or build upon the material, they must license the modified material under identical terms.
BY: Credit must be given to you, the creator.
SA: Adaptations must be shared under the same terms.ng








